
TINE Collaboration
Meeting 2012

If your software project team can eat more than two
pizzas, then it is too large!

Issues

 Release 5.0 Requirements
 Properties and Devices
 Security
 DOOCS compatibility
 Supported Platforms and APIs (including Web)
 Central Services
 Standard servers
 Video system
 Peripheral Applications (watchdogs, etc.)
 Diagnostics and logging
 CDI, TICOM, + other low-level interfaces
 Documentation and Forums
 Distribution / Repositories

Release 5.0 Requirements

 protocol headers
◦ new protocol headers => new major release !

 string lengths
 contract coercion
 error codes
 supported data types
 performance criteria
 redirection / server groups
 hot-swapping / fail-over / redundancy
 configuration database
 „hooks‟ to additional services

Protocol Headers

 all client requests begin with a packet
header:

And it‟s been like this since
the Isolde days !

Protocol Headers: packet header

 „tineProtocol‟ field tells the server which tine
protocol the client wants to speak!
◦ A legacy server will respond with „illegal_protocol‟ if

the requested level is too high (or too low).

 e.g.#1: release 4 client contacts release 3 server
◦ client receive „illegal_protocol‟ and tries again with release

3 headers

◦ everyone is happy !

 e.g. #2: release 3 client contacts release 4 server
◦ server is willing to work with release 3 headers

◦ everyone is happy !

◦ Note: a release 4 server is NOT willing to use
release 2 headers !

Protocol Headers: packet header

 Points:
◦ In order for backward/forward compatibility to work, the

„tineProtocol‟ field must always be in the same spot in
the packet header !

◦ So „user name‟ is always 16 characters or less !
 Is this an issue ? (see „String lengths‟ later).
 (actually not really true: just need byte 18 to point to the

protocol level)
◦ It‟s probably time to split off the „totalSize‟ field from the

header definition (or not?).
 totalSize is an unsigned short => maximum 65535 bytes
 tine does its own packet reassembly => not a problem!

◦ This also happens in Java, but the incoming/outgoing
byte streams are mapped into fields in a class
 Java does not have structures
 Java does not have unsigned integers

Protocol Headers: packet header

 Java:

signed short

Maximum Transport Unit

 MTUs
◦ Response (server -> client)

 settable: 512 -> 64 K
 default : 1472

◦ Request (client -> server)
 settable only in C and only at compile time
 default: 1472
 some builds (NIOS) had 1000 bytes
 note: client requests rarely send large data sets to

server !

 => also allow this to be settable !
◦ (and fix the java code)

Protocol Headers: subscription

 Subscription Header from client
◦ can be packed (multiple requests in a packet)

◦ any packet reassembly (due to long input data)
must recognize the contract !

212 bytes

Protocol Headers: CONTRACT

 The contract structure:
◦ together with input data uniquely specifies the
call !

◦ EqmDeviceName ends with „&‟ => use
extended string space.

188 bytes

Protocol Headers: the Request

 A request from a client contains:
◦ PktHdr (the incoming packet header)
 gives total number of bytes in the request

◦ N x the following:
 where N = number of packed requests

 SubInfoPkt (subscription request)

 extended string space if any (long device names)

 input data

◦ keep looping until the total number of bytes
have been read.
 most of the time : N = 1

Protocol Headers: the Reply

 producer header (what the client sees)

44 bytes

Protocol Headers: the Reply

 A reply from a server contains:
◦ totalSizeInBytes as int16

 (n.b. for CF_STREAM: as int32)
◦ N x the following:

 PrdrHdr (returned producer header)
 associated data if any
 status string if any (up to 192 bytes)

◦ Keep looping until totalSizeInBytes has been
handled.

◦ Note: packet reassembly vs. packed responses
 large data set: N = 1 and many packets
 but: several contracts returning ‘1 float’ can be

packed!

Protocol Headers: the Reply

 Some examples …
◦ a write command :

 no returned data !
 success => just the PrdrHdr
 failure => PrdrHdr + status string

◦ a read request (success) :
 PrdrHdr
 the data

◦ a read request (failure) :
 PrdrHdr
 status string

◦ a read request (status != 0 + CE_SENDDATA) :
 PrdrHdr
 the data
 status string

Protocol Headers: release 5.0

 Additional information in request (PktHdr)?
◦ caller pid ? why ?
◦ others IDs ?

 client application „type‟ ?
◦ script, MatLab, middle layer, GUI, etc.
◦ How to determine this ?

◦ endianness flag ?
 or stick with little endian ?

◦ character encoding flag ?
 or use UTF8, stick with ascii ?

◦ anything else ?
◦ reserved space ?

Protocol Headers: release 5.0

 Additional Information in Subscription ?
◦ use contract tag/id for reassembly packets ?

 instead of repeating the CONTRACT

 saves repeating 188 bytes of the mtu size

 n.b. only need reassembly when sending a large
data input set.

 not worth the bother ?

◦ anything else ?

Protocol Headers: release 5.0

 Additional Information in CONTRACT ?
◦ supply input/output data sizeInBytes ?

 data size + format do not always uniquely
determine size in bytes for some data types !
◦ CF_STRING, CF_AIMAGE + other adjustable length data

types (and structures that contain them)!

◦ the data „tag‟ is currently (mis-)used for this info.

◦ Maybe: sizeInBytes and sizeInElements ?

◦ extended string space for property names ?

Protocol Headers: release 5.0

 Additional information in reply header ?
◦ as in CONTRACT: need number of elements !

◦ anything else ?

Release 5.0: string lengths

 Relevant string lengths in these headers:
◦ DEVICE_NAME_SIZE: 64 bytes

 the registered device name length!
◦ queries usually ask for a list of NAME64 items

 BUT: can use extended space (up to 1024 bytes)
◦ e.g. requesting a „list‟ of names as in “cdiDev1,cdiDev2,cdiDev3,…” or

“motor1,motor3,motor5,…”
◦ Using „DeviceName‟ as a free parameter to supply e.g. a file path

◦ PROPERTY_NAME_SIZE: 64 bytes
 the registered property name length!
 no extended string space option

◦ EQM_NAME_SIZE: 8 bytes
 the „local‟ equipment module name
 historically only 6 characters (NODAL!) have even been used.

◦ TAG_NAME_SIZE: 16 bytes
 For tagged structures, bitfields, + some „other‟ cases

◦ USERNAME_SIZE: 16 bytes
 parallels the FECNAME_SIZE
 has always been enough, BUT:

◦ Windows users name can be 20 characters

Are these OK ?

Release 5.0: addresses

 FEC address structure:
◦ a FEC manages 1 or more EQM

◦ an EQM is the internal representation of a device
server

Release 5.0: addresses

 EQM address structure
◦ principal addressable information:

◦ additional FEC information:
(not important for client-

 server communication)

Release 5.0: string lengths

 Relevant string lengths in these structures
◦ FEC_NAME_SIZE: 16 bytes

 parallels USERNAME_SIZE

◦ ADDR_SIZE: 16 bytes

 semi-redundant if IP addr as byte representation
also present

◦ SUBSYSTEM_NAME_SIZE: 16 bytes

◦ CONTEXT_NAME_SIZE: 32 bytes

 n.b. does NOT appear in protocol headers!

◦ EXPORT_NAME_SIZE: 32 bytes

 n.b. does NOT appear in protocol headers!

Release 5.0: IPv6 support

 IPv4:
◦ 4 bytes
◦ string representation: e.g. “131.169.151.47” (16 chars)

 IPv6:
◦ 16 bytes
◦ string representation: e.g.

“2001:0db8:85a3:0000:0000:8a2e:0370:7334” (40 chars)
◦ 64-bit network prefix + 64-bit interface id

 IPv4 to IPv6 mapping
◦ hybrid dual-stack (hybrid sockets)
◦ 80 „0‟ bits + 16 „1‟ bits + remaining 32 IPv4 bits
◦ “0000:0000:0000:0000:0000:ffff:83a9:972f” OR
◦ “::ffff:83a9:972f” OR
◦ “::ffff:131.169.151.47”

 Tunneling
◦ IPv4 only hosts communicating with IPv6 only hosts

Release 5.0: IPv6 support

 Proposed FEC
address
structure:
◦ no real IPX
support

◦ inetProtocol:
 UDP, TCP, …

 UCPv6,
TCPv6, …

◦ 96 bytes (was
64 bytes)

Release 5.0: IPv6 support

 Considerations:
◦ how much hybrid support ?

 a server listens on IPv6 OR IPv4 sockets but not
both, etc.

 use „hybrid sockets‟ ?

◦ this will also affect the ipnets access lists

◦ how best to be IPv6 ready ?

Release 5.0: character sets

 Currently:
◦ C-Lib and Java Lib transfer ascii 1-byte chars over

the net.

◦ Java Lib API uses unicode char strings.

◦ C-Lib API uses ascii char strings.

 BUT VB 6, .NET, MatLab, etc. wrappers use unicode.

◦ most applications are unaware that they are NOT
using unicode unless they try to pass e.g. Japanese
characters.

◦ switch to UTF-8 ?

Release 5.0: character sets

 Currently all strings are transferred as
ascii characters (1 char = 1 byte)

 UTF8:
◦ represent all characters in unicode
◦ variable width encoding
◦ backward compatible with ascii
◦ no endianness or byte-order mark problems

acsii 0 – 127: covers English

Release 5.0: UTF-8 support

 encode/decode all string data as UTF-8 ?
◦ also: exposed names such as Device Name,
Property Name, Context, etc.

◦ file i/o: convert to locale settings?

◦ transferred data

 existing APIs remain unchanged.

Release 5.0: contract coercion

 Servers can steer inelegant client requests in the right direction.
◦ BUT the „steering‟ information needs to be registered !
◦ SetMinimumAllowedPollingInterval()
◦ RegisterPropertyInformation(,,, access, array_type, ,,redirection)

 array_type = CA_CHANNEL
◦ enforce MCA acquisition

 access = CA_NETWORK
◦ enforce multicast access
◦ also blocks synchronous calls

 access = CA_STATIC
◦ block monitors

 access = CA_NOSYNC
◦ block synchronous polling
◦ automatic start of client side listener ?

 redirection != NULL
◦ requests to this property go to another server

 data type = registered structure
◦ access of a structure field will return entire structure

◦ RegisterMultiChannelGroupDevice()
◦ alternative to CA_CHANNEL for strict OO devices

◦ RedirectDeviceName(,, redirection)
 redirection != NULL

◦ requests to this device go to another server

Release 5.0: contract coercion

 Relevant „hand-shaking‟ status codes:
◦ caller should never see these !
◦ FEC/Server steering:

 invalid_protocol < establish communication protocol
 invalid_interval < establish polling interval

◦ property steering:
 get_subscription_id < listen for multicasts
 property_is_mca < provide index to MCA
 reset_mca_property < when MCA elements change
 information_static < stops polling of static data
 server_redirection < redirect request
 async_access_required < block synchronous acquisition
 mcast_access_required < require multicast access
 has_structure_tag < field has underlying structure

◦ device steering:
 data_not_local < wildcard device is not local
 server_redirection < redirect request

Release 5.0: contract coercion

 What are we trying to avoid?
◦ sending same data set to a long list of clients !

 CA_NETWORK

◦ inefficient/counter productive polling intervals
 property is being scheduled at a high rate
 set minimum polling interval

◦ single element acquisition of a known multi-channel array
 CA_CHANNEL

◦ single field acquisition of a known structure
◦ polling/monitoring static information

 CA_STATIC
 e.g. the units are “Amperes” and they aren‟t going to change!

◦ synchronous polling of something that should be monitored
 CA_NOSYNC

◦ anything else ?

Release 5.0: error codes

 error codes/status codes < 512 are deemed
„systematic‟
◦ not all „errors‟ or „exceptions‟ !
◦ some are ancient (date back to the Isolde days)

 need the „tdc_‟ prefix ?
◦ some are for handshaking

 n.b. error codes from a dispatch routine run thru a
validator !

◦ some are informational
 CE_SENDDATA

◦ e.g. has_query_function

◦ some indicate „link‟ or network errors
◦ some indicate „call‟ errors

◦ do we need more structure in this?
◦ prune unnecessary codes ?
◦ any obvious missing codes ?

Release 5.0: data types

 Supported data types
◦ All the „primitives‟

 CF_BYTE 1 byte
◦ byte (some 32-bit C, VB6, java, .NET); also Int8 (.NET)
◦ Unsigned byte (.NET); also UInt8 (.NET)

 CF_CHAR (CF_TEXT) 1 byte
◦ char (C without #define UNICODE, .NET with ansi encoding)
◦ byte (java, VB6)

 CF_INT16 (CF_SHORT) 2 bytes
◦ int (VB6, 16-bit C)
◦ short (not MatLab); also Int16 (.NET)
◦ unsigned short (not java, VB6, MatLab); also UInt16 (.NET)

 CF_INT32 (CF_LONG) 4 bytes
◦ long (VB6, non 64-bit C, MatLab)
◦ int (32-bit, 64-bit C, java, Labview); also Int32 (.NET)
◦ unsigned int, long (32-bit, 64-bit C, Labview); also UInt32 (.NET)

 CF_INT64 (CF_DLONG) 8 bytes
◦ long long (UNIX 32-bit C)
◦ _int64 (WINDOWS 32-bit C)
◦ long (64-bit C, java, .NET); also Int64 (.NET)
◦ unsigned long (64-bit C, .NET); also UInt64 (.NET)

 CF_FLOAT 4 bytes
◦ float (C, java, .NET)
◦ single (VB6, LabView)

 CF_DOUBLE 8 bytes
◦ double (everybody!)

Release 5.0: data types

 Primitives
◦ do we need explicit „unsigned‟ definitions?

 it‟s „only‟ a matter of interpretation at the end
points, BUT you have to know a priori how to
interpret!

◦ or: just „do a java‟ and claim everything is
signed

 and leave the developer to his tricks…

◦ note: „STRING‟ is NOT a primitive !

Release 5.0: data types

 String types
◦ CF_CHAR (CF_TEXT)

 (an array of) 1-byte characters
 i.e. a string

◦ CF_NAME8, CF_NAME16, CF_NAME32, …CF_NAME64
 (an array of) fixed-length (i.e. fixed capacity) strings
 very good for querying lists
 very efficient to traverse

◦ CF_STRING
 (an array of) mutable strings
 in C this corresponds to an array of pointers !

◦ CF_KEYVALUE
 (from the doocs world)
 parallels CF_STRING
 (an array of) mutable strings of the form “key: value”

◦ CF_XML
 (from the doocs world)
 parallels CF_TEXT

Release 5.0: data types

 Compound Data Types
◦ doublets

 e.g. CF_LTINT, CF_DBLDBL, CF_INTINT, CF_NAME32I, etc.

◦ triplets
 e.g. CF_FLTFLTINT, CF_NAME64DBLDBL, etc.

◦ quads
 e.g. CF_ADDRESS, CF_FILTER, etc.

◦ special
 e.g. CF_SPECTRUM, CF_IMAGE, etc.
 Header + designated length of some other type (each element in an array of

these has the same length)

◦ adjustable length
 e.g. CF_ASPECTRUM, CF_AIMAGE, etc.
 Header + adjustable length of some other type (each element in an array of

these can have a different length)

◦ systematic
 e.g. CF_HISTORY

◦ (almost) complete overlap with DOOCS data types

◦ remove deprecated types !
 e.g. CF_DBLINT only ever made sense on MSDOS

Release 5.0: data types

 tagged structures
◦ can contain any other data type

 except CF_HISTORY
 can also contain „adjustable‟ types

◦ can be nested
◦ best practice: use primitives and don‟t nest too deeply

 .NET:
◦ has structures
◦ if structure is „blitable‟ (all primitives) then the block of memory is easily

accessible and handled more efficiently.

 MatLab:
◦ Essentially composed of (arrays of) char, long, and double

◦ (first order) fields can be read (but not written) independently
 BUT entire structure is always delivered.
 do we need to read nested fields independently ?

◦ „tag‟ and „field‟ names are limited to 16 characters
 is this a problem ?
 note: accessing a field => request <property>.<field>
 restrict <property> length to 64 – 16 characters if data type =

CF_STRUCT ?

Release 5.0: data types

 Bitfields
◦ Applies only to „integer‟ types

 CF_BITFIELD8, CF_BITFIELD16, CF_BITFIELD32, …

◦ can be used to enumerate bits

◦ can also give names to „fields‟ of bits

◦ can read any field independently

◦ WRITE commands pass the data sent to the
dispatch handler as is.

◦ How to WRITE bits (bit fields) independently?

 Somehow pass the „field‟ or field mask to the dispatch?

◦ Note: the .BIT.x meta-properties have some
overlap here.

Release 5.0: performance issues

 Tweaking Performance
◦ Quality of Service

 UDP, TCP, STREAM, PIPEs and MMFs

◦ threads
 priorities

◦ default settings
 LAZY vs. EAGER scheduling
 flow control parameters for UDP
 thread priorities and synchronization
 deadbands, timeouts
 lingering canceled contracts
 default table lengths

◦ client, contract, connection tables …
◦ resources_exhausted ?
◦ use ArrayLists in java after all ?

◦ bottlenecks ?
 eqm dispatch is synchronized

◦ but can run on separate thread if needed (other calls would get „operation_busy‟ rather
than a „link_timeout‟).

◦ can also return „not_ready‟
◦ Can optionally synchronize with the background dispatch.

◦ Other issues?

Release 5.0: redirection/groups

 Redirection:
◦ from any /context/server/device[property] to any other

/context/server/device[property].
 requires „status string‟ to be up to 192 bytes.
 no „long‟ device name allowed here!

 Group Equipment Name Server (GENS)
◦ redirects the device entries in its database to the appropriate

target server.
◦ needs device „metric‟ if the device order is important
◦ Can apply device name pre- and post-fixes to avoid device name

collisions if necessary.

 Archive System
◦ central archive redirects back to device server for „local‟ history

information
◦ device server redirects to central archive of „.ARCH‟ meta-

properties

 redirection issues ?

Release 5.0: hot swapping

 hot swapping devices
◦ use

 RegisterDeviceName(), AssignNumDevices(),
SetSizeDeviceCapacity()

 should call ResetMultiChannelProperty() if hot
swapping a device within an MCA

◦ any issues ?

 adding/editing settings on-the-fly
◦ local histories
◦ alarm watches
◦ units, max/min settings

 additions/edits are currently „volatile‟.
 save the changes ?

◦ there‟s not always a config file!

Release 5.0: failover

 Software failover of device server
◦ 2 servers with identical functionality

 e.g. /PETRA/Idc.OR08 and /PETRA/Idc.OR19
 one is declared master

◦ Registers itself a 2nd time with a „common‟ name
◦ e.g. as /PETRA/Idc

 one is declared slave
◦ monitors the master

◦ failure of master: triggers the slave to register as master
◦ return of real master: should resume its role!
◦ running client will experience a down time on the order

of minutes.
◦ „best source‟ scheme (vs. load balancing scheme).
◦ Should this be configurable?

 e.g. best source or load balancing

Release 5.0: configuration

 Configuration options
◦ Clients need to resolve addresses !

 without ENS (Equipment Name Server)
◦ run in stand-alone mode (TINE_STANDALONE=TRUE)

 use the „dynamic‟ cache
 explicit instruction NOT to use the ENS

◦ use a „local‟ database repository
 TINE_HOME points to it

 with ENS(es)
◦ need to „find‟ the ENS(es)

 TINE_HOME -> cshosts.csv (contains known address)
 TINE_ENS specifies it
 DNS + „tineens‟
 multicast: „ENS where are you?‟
 assign via API

 any other ideas ?

Release 5.0: configuration

 Configuration options
◦ servers can register all info via API

 and some do !
◦ all doocs servers
◦ epics2tine
◦ tango2tine
◦ etc.

◦ else
 FEC_HOME points to FEC database repository
 can use xml as database (fec.xml) or .csv files.
 can also use API registration as well.

◦ but
 save-and-restore only uses .csv files
 and uses the FEC_HOME repository

◦ any issues ?

Release 5.0: configuration

 csv File configuration
◦ FEC_HOME points to repository
◦ fecid.csv found there : FEC name and port

 issues with fecid.csv ?

◦ each registered equipment module (EQM) has a
subdirectory given by its process-„local‟ EQM name (6
characters)
 e.g. ./BLMEQM
 exports.csv : export (server) name, property info
 devices.csv : device names + info
 users.csv : allowed users (and groups)
 history.csv : local history info
 alarms.csv, almwatch.csv : alarm system info
 ipnets.csv : allowed net addresses
 + <property>-users.csv, <device>-users.csv, etc.
 + save-and-restore files

◦ backward compatibility:
 also see if these files exist directly under FEC_HOME area !

Release 5.0: configuration

 exports.csv
◦ spreadsheet like

 focus on: exported property information
 => no hierarchy !
 some column-repeated information:

◦ context, export name, number devices, etc.

 max, min, units now parsed from description
◦ Provide extra optional columns ?

 MAX, MIN, UNITS, XMAX, XMIN, XUNITS ?

 fec.xml
◦ is hierarchical
◦ same tags as .csv columns
◦ all info in 1 large file

 a bit more cumbersome to auto-update
 no possibility of e.g. inserting a history.csv file „under‟ a

server.

Release 5.0: configuration

 dynamic cache location ?
◦ use an environment variable ?

◦ current defaults:

 Win32: %SystemDrive%:\tine\cache

 unix: /var/tmp/tine/cache
◦ but this is cleared on reboot of host

◦ check for /var/tine/cache (with o:rw)?

Release 5.0: hooks

 hooks to additional resources ?
◦ currently: hook for external fd (sockets) sets

◦ Others ?

 e.g. a hook for a real-time delay : rtdelay() ?

Properties and Devices

Properties and Devices

 Properties
◦ are methods !
◦ provide the essential point of contact to the
equipment module dispatch handler
 no property -> no dispatch !

◦ can have access control lists
◦ have meta information
 canonical data size and type

 units

 max and min settings

 etc.

Properties and Devices

 Properties

Properties and Devices

 Questions:
◦ Do we want to distinguish between
 max and min „display‟ settings
 and
 max and min „set point‟ settings ?

◦ Should there be an (optional) „automatic‟
out_of_range check if attempt to WRITE a
value past the set points ?

◦ Any other missing meta-attributes ?

Properties and Devices

 meta properties
◦ property name + up to 4 char meta extension

 e.g.
◦ LossRates.HIST (history of property “LossRates”)
◦ Charge.EGU (engineering units of “Charge”)
◦ Orbit.X.NAM (associated channel names for “Orbit.X”)
◦ Trace.XMIN (x-axis min value for “Trace”)
◦ etc.

◦ gated meta properties
 e.g.

◦ Status.BIT.3 (bit 3 of „integer‟ property “Status”)
◦ Register.MASK.0x7 (value of “Register” masked by 0x07)
◦ Status.Gate.0xae (binary output of “Status” gated against 0xae)

 Coming soon:
◦ Pressure.DMASK.3 (MCA returns those devices whose device mask is

„3‟ – doocs SYS_MASK)
◦ Pressure.DMASK.3.NAM (MCA device names whose device mask is 3)
◦ Possible enumerations for the „3‟ ?

 e.g. Pressure.DMASK.turbo

Properties and Devices

 Multi-Channel Array (MCA) properties
◦ Required behavior

 must supply an array of equal length and corresponding to either
◦ 1) the registered device list
◦ 2) an assigned device list

 see AssignDeviceListToProperty()
◦ 3) another registered property of the same name but with the meta-

extension “.NAM”.

 note: using either 2) or 3) above automatically flags the server
as having „property query precedence‟ (i.e. a „property server‟
instead of a „device server‟).

 must accept the contract‟s „DeviceName‟ as the starting point in
the MCA and return the number of elements requested.
◦ often 1 element OR all elements starting at the beginning.
◦ the dispatch can wrap past the end or truncate the call as desired.

◦ can also make use of RegisterMultiChannelGroupDevice() if
there is a hard device query precedence!

Properties and Devices

 Devices
◦ may or may not refer to hardware devices

◦ can have:
 property lists

◦ which of the registered properties are supported by this
device ?

◦ flags the server as having device query precedence.

 access control lists

 description

 location

 Alarm lists

 mask (doocs SYS_MASK)

 Z (longitudinal) position

Properties and Devices

 Any open issues?
◦ wildcard support ?

 both DeviceName and PropertyName support
wildcard calls.

Security

Security

 TINE security based on
◦ user name

 those 16 bytes in the PktHdr
 to do: use API instead of USERNAME env.
 done in 4.2.3: allow groups

◦ e.g. server can allow all members of „mhfe_user‟

◦ network address
 from the ethernet packet
 single address or range

 3 Levels (cumulative)
◦ server
◦ property
◦ Device

 Access Locks
◦ Only the client with the token is allowed access

 Exclusive Read
◦ A property can register XREAD in its access parameter
◦ XREAD and READ together require an Access lock to be in effect.

Security

 Assigning the ACL information
◦ via API

 e.g. AssignDeviceAccessList()

◦ via database configuration file

 fec.xml (not yet!)
◦ => Stock properties to ADD/REMOVE ACL items update

the .csv files!

 e.g. „users.csv‟, <deviceName>-ipnets.csv, etc.
◦ Trying to minimize „scanning for files‟ at startup by first

checking directory for „*-ipnets.csv‟, „*-users.csv‟

◦ other/better solutions?

DOOCS compatibility

DOOCS compatibility

 Issues
◦ most pure acquisition features are mapped !

 data type mapping is 99%
◦ exotic history data types (in progress)
◦ TINE struct and bitfield not supported in doocs

 how much of a problem is that ?

◦ full function mapping still an issue
 e.g. calling P.HIST on a doocs server over a time range,

asking for a single int32 value will fail
◦ TINE returns the number of points in the interval

 many such „gotcha‟s, but mostly at this (2nd tier) level
◦ security (a persistent bother)

 doocs server must supply the gid/uid of the „resolved‟
user seen in the TINE PktHdr.
◦ A FEC middle layer will supply the FEC name (definitely not

resolvable).
◦ Solution: FEC call to a doocs server can set the doocs user to the

logged in user (who is hopefully resolvable).

DOOCS compatibility

 Issues (continued)
◦ „hidden‟ stock properties in TINE

 very easy to „unhide‟ at the browser (e.g. rpc_test): just show them.

◦ „hidden‟ meta-properties in TINE

 A bit trickier to „unhide‟ only the „relevant‟ ones
◦ acquire full property query information

◦ e.g. if „prpHistoryDepthShort‟ > 0 then show <property>.HIST in the browser.

◦ e.g. if max or min != 0 or units != “” then show <property>.EGU in the browser.

◦ etc.

◦ some doocs „favorites‟ could be added to the meta-property soup:

 .SYS_MASK will appear in 4.2.3

 what else ?

◦ property servers

 browse differently !

 trap the „has_query_function‟ status with a call to DEVICES

 Fill in „locations‟ with the results of <property>.NAM at each change of
property.

DOOCS compatibility

 Issues (continued)
◦ configuration

 server administrator must remember to set the SVR.GROUP if server is a
member of a group
◦ e.g. group server BLM consists of 3 servers BLM.1, BLM.2, BLM.3 running on

different hosts.

 should take time to set SVR.TINEFEC
◦ provide a „sensible‟ FEC name (e.g. “PEVACFEC”) to avoid the automatic name of

e.g. “Io83a997ab.1f8”

 make use of SVR.TINEPREF and/or SVR.TINESUFF to decorate a device
server name to avoid collisions or ambiguity
◦ e.g. SVR.TINEPREF “LASER.” would register a server “LASER.ADCSCOPE” instead

of “ADCSCOPE”

◦ subsystem decorated contexts
 PETRA.VAC without subsystem leads to context “PETRA” and the server

belongs to subsystem “VAC”.
 address resolution does not care:

◦ e.g. /PETRA.VAC/IonPump and /PETRA/IonPump both resolve to same server

 could lead to name collisions in TINE (unless e.g. SVR.TINEPREFF was
used)

 supply a subsystem => the decoration will not be removed
◦ but then we end up with a slough of contexts which nominally belong to the same

facility.

DOOCS compatibility

 Issues (continued)
◦ nice to have:

 recognize and register MCA properties.

 Fill in the „system stamp‟ and/or „user stamp‟ with
e.g. pulse number

Platforms and APIs

Platforms and APIs

 Supported Platforms
◦ Any reason to continue supporting DOS,
Win16?

 if release 3.xx is still supported, they will work

◦ VMS may or may not still work

◦ Anything else needed?

 RTEMS ?

 android ?

◦ Embedded issues ?

 is there a disk ?

Platforms and APIs

 Language support
◦ C, C++, C# (and .NET), Java

 native libraries: C and Java
 everything else interops with the C library
 C-Lib can be single threaded (tine.dll, libtine.so) or multi-threaded (tinemt.dll,

libtinemt.so)

◦ Delphi (Lazarus)
 based on C Lib
 visual pascal

◦ LabView
 based on C Lib

◦ MatLab
 official „mex‟ routines based on C Lib
 could also use the java Lib
 octave ?
 experiences ?

◦ Python
 PyQt, IPython ?

◦ Perl ?
◦ Functional languages?

 Scala, F#

Platforms and APIs

 API primarily based on the idea of
◦ a Contract
 the requested action/information from the target

◦ a Link
 connects the results of the action to the process
data

 specifies a transport mode
◦ SINGLE (asynchronous or synchronous)
◦ TIMER (POLL)
◦ DATACHANGE (REFRESH)
◦ EVENT
◦ RECEIVE

Platforms and APIs

 APIs
◦ C and Java APIs are well known

 cardinal rule: don’t break the API!
 C API is NOT object oriented

◦ suffers a bit from lack of „overloading‟
 extended routines:

◦ e.g. RegisterDeviceEx(), AttachLinkEx2()

 Java IS and makes use of a Link Object with data
acquisition methods !

 both: data is always passed by reference
◦ => in Java a scalar is an array of 1 (MatLab does this too!)

 what is missing, wrong, useless ?

◦ „Official‟ C++ API ?
 (currently there are several)

Platforms and APIs

 APIs (continued)
◦ C# and .NET interop with the C Lib but model the API on

Java.
 except: everything (even primitives) really is an object

and you can pass by reference !
 structures are easiest in .NET

◦ note: with the „interop‟ there must be a platform specific
library „tinemt.dll‟ or „libtinemt.so‟ on the path !
 then can compile with „anyCPU‟

◦ ACOP
 graphics API designed for control
 originally a common transport API

◦ ACOP ActiveX support(ed)
 TINE, CA, MKI, CDI, ISOLDE, ConSys, etc.

◦ acopbeans supports only TINE (and simulation)
 but with a bit of refactoring ?

◦ Interest at KEK to get/set STARS via acopbeans.
◦ ACOP.NET is in prototype

Platforms and APIs

 ezTine API ?
◦ model on buffered API ?

Platforms and APIs

 Web Tools
◦ Web2C ?

◦ PhP ?

◦ .NET, silverlight ?

◦ browser plugin ?

 instead of http://something.desy.de

 tine://context/server/device/property

http://something.desy.de/

Platforms and APIs

 Command Line tools
◦ frequently used in scripts
◦ can become problematic:

 each tget needs to resolve an address
◦ contacts the ENS to get the address
◦ makes the synchronous call to get the data it wants
◦ then exits and forgets everything

◦ a forgotten solution:
 a local repeater runs in the background on the local

host
 „tget‟ first checks for a repeater

◦ exists:
 get data from repeater
 repeater caches the target address and maintains a static

listener
◦ doesn‟t exist:

 do it the brute force way

Central Services

Central Services

 Some have direct relevance to TINE Lib
◦ e.g. a starting server clears its alarms

 if the call to “/<myContext>/CAS/RemoveAlarms” is
successful -> Yes, the CAS is monitoring me !

◦ TINE time synchronization expects
“/SITE/TIMESRV” to exist
 if not: no TINE time synchronization

◦ if “/<myContext>/Cycler” exists apply the incoming
cycle number global to my „system stamp‟.

◦ redirect any “<property>.ARCH” call to
“/<myContext>/HISTORY”

◦ etc.

Central Services

 Any issues with :
◦ naming (ENS/GENS) ?
◦ archive system (ARCHIVER/HISTORY) ?
◦ post mortem/event (EVENTS) system ?
◦ globals system (GLOBALS) ?
◦ alarm (CAS/ALMSTATE) system ?
◦ state system (STATE) ?
◦ statistics system (FECSTATS) ?
◦ central logging system (CLOG) ?
◦ spy system (CSSPY) ?

 viewing tools, GUIs ?
 specific APIs

◦ how do I get this/that from the
 ENS ?
 CAS ?
 etc.

Standard Servers

 Standard semi-off the shelf servers
◦ motor server

◦ scope server

◦ video server

◦ any other „off the shelf' servers ?

◦ scan server ?

◦ sequencer

◦ FSM ?

◦ USC (universal slow control)

◦ tine repeater

Video System

 Client-side C library with codecs and other
tools?

 Any other issues?

Peripheral Applications

 watchdogs
◦ win32: wdog

◦ Linux : autoproc

◦ what should they be able to do?

 remote restart daemons
◦ wdog, autoproc can do this

◦ VxWorks restart task

 application managers ?

diagnostics and logging

diagnostics and logging

 tracing problems …
◦ general setup (“nothing works”) problems

 TINE setup checker (in progress)
◦ dump relevant environment variables
◦ check connectivity to ENS
◦ check manifest
◦ check firewall settings
◦ etc.

◦ Log files
 location given by FEC_LOG
 C-Lib:

◦ fec.log (1 rotation into fec.bak)
◦ LF-CR as per OS
◦ format suggestions ?

 <time> [fec name] (log entry)

 time zone in <time> constrained to 3 char => standard length

 Java:
◦ Uses java.util.logging.FileHandler
◦ LF only
◦ fec.log.0 (rotates into fec.log.x)
◦ time zone as per JVM locale (e.g. “CET” and “CEST”) => non-standard length

 all WRITE commands logged by default
 comments/ suggestions ?

diagnostics and logging

 tracing problems …
◦ attachfec

 normally uses a local PIPE into the FEC process
◦ use the FEC name as the PIPE name

 allows remote access to FEC

 can also attach to a local client process
◦ use the pid as the PIPE name

◦ comments/suggestions ?

Low Level interfaces

 CDI
◦ active as well as passive CDI servers ?

◦ a CDI is a „property server‟

 need a „device server view‟?

◦ any issues ?

 TICOM
◦ any issues ?

Documentation and Forums

 basic web site (http://tine.desy.de)
◦ straight-up doxygen generated

◦ other look and feel ?

◦ organizational issues ?

◦ tutorials ?

◦ application videos ?

 mantis (http://tinetracker.desy.de)

 phpbb (http://tineforum.desy.de)

 wiki ?

http://tine.desy.de/
http://tine.desy.de/
http://tinetracker.desy.de/
http://tinetracker.desy.de/
http://tineforum.desy.de/

Distribution and Repositories

 .zip and .tar files

 .deb, .rpm, .msi ?

 'setup' scripts ?

 SVN accessibility ?

Tentative Conclusions

 Where do we go from here ?

Request header: PktHdr new fields

 HeaderSize
 pid
 Endianness
 Character encoding flag ? (probably not

necessary)
 Application „string‟ (maybe 64 bytes)

◦ a short „tag‟:
 A middle layer : “FEC”
 A „wrapped‟ application: e.g. “MatLab”, “Python”,

“Web2C”, “LabView”, etc.
◦ + process name

 Reserved fields (not necessary if HeaderSize is in
header)

Response Header

 Also needs a PktHdr: We forgot about
this!

 Those initial 2 bytes (totalSizeInBytes as
UINT16) should become a response
header with:
◦ totalSizeInBytes

◦ HeaderSize

◦ endianness

◦ FEC name

Other items …

 sizeInBytes, sizeInElements on request and response

 settable mtu on request side

 unsigned integer format definitions
◦ CF_UINT8, CF_UINT16, CF_UINT32, etc.

 display AND setpoint max/min settings ?
◦ NO: one set of max, min
◦ Can be used for setpoints via call to AssertRangeValid() if developer wants

 return code

◦ categorize which return codes an EQM is allowed to use
◦ structures

 status, return code, return source at server, etc.

◦ => don't break current API !
◦ Java: optional unchecked exceptions ?

 If „some boolean flag‟ = true then e.g. throw tineIoException() ?

software failover

 Is „best source‟ !

 Could do load-balancing this way:
◦ Instead of “master/slave” use
“primary/secondary”

◦ primary monitors secondary's NCLIENTS

◦ primary needs to redirect to secondary if

 my NCLIENTS >> his NCLIENTS

Port Offset

 API to GetMyPortOffset(FECNAME)
◦ Check local manifest

 Found FECNAME -> return assigned port

 Not found -> return „next free port‟

◦ Could also check with the ENS ?

◦ Note the /var/tmp area on Unix is not a good spot
for the manifest.
 Try env variable

 Then try /var/tine/cache directly

 Then resort to /var/tmp/tine/cache

 Or service daemon ?

Meta Properties

 Stock property to return useable Meta-
Properties
◦ “METAPROPERTIES” ?

◦ “FILLEDMETAPROPERTIES” ?

◦ Also use in Instant Client

 (show available meta properties check box)

API for dummies and profis

 EZTINE
◦ Based on „buffered API‟ ?
◦ Small < 2 pizza) committee to agree on a reduced set of

simple API calls (+ tutorial)

 C++
◦ Small (< 2 pizza) committee to agree on a C++ API
◦ Special aside: use UNASSIGNED_CALLBACK as callbackId in

AttachLinkEx() or AttachLinkEx2() to receive the link Id.

 Java
◦ Remove „final‟ from TLink object, etc.
◦ New API calls that throw checked exceptions ?

 (Ahhh, now that‟s java!)

◦ vs. optional unchecked exceptions ?
 (violates „official‟ java style)

Other stuff

 MatLab API
◦ Java or C++ ?

 Command line tools (especially tget):
◦ Make use of (old) local tineRepeater daemon

