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Abstract 
 An accelerator control system must in general support a 
variety of hardware devices and field busses. The 
Common Device Interface (CDI) is designed to provide 
the control system engineer with an easy-to-use-and-
understand interface for accessing data from the hardware 
devices, independent from the underlying field bus. The 
concept behind CDI was initially presented in PCaPAC 
2005[1]. Since that time CDI has undergone numerous 
refinements which render the writing of a plug-and-play 
CDI bus plug a straightforward procedure on the one 
hand, and allow the server developer an intuitive interface 
for acquiring or setting hardware data either 
synchronously or asynchronously and from either single 
or multiple devices.   

We note here some of the differences in philosophy 
between CDI and asynDriver [2] (used by EPICS) and 
DOOCS[3] device drivers, and we report on the first 
operational results using CDI on several different 
TINE[4] platforms (including, Windows, Linux, and 
Java).  Although CDI can be trivially hooked into a TINE 
server and offers the TINE client interface to the 
hardware, it is not tightly bound to TINE and could in 
principle be used independently. 

INTRODUCTION 
The access and control of hardware devices is typically 

achieved via fundamental ‘Get’ and ‘Set’ operations, 
where a ‘Get’ is used to acquire data or status information 
from the hardware bus and a ‘Set’ is used to change 
control modes or download data to the hardware.  The 
details behind these simple operations are in general quite 
varied for disparate bus types.  Some bus drivers offer 
single-channel read and write calls while others utilize 
duplex channels for read and write. Some bus drivers are 
single master, others are multi-master. The bus data 
format can also be different.  For instance, RS232 deals 
with character string data, whereas SEDAC deals with 
short integers.  Hence the interfaces to these ‘Get’ and 
‘Set’ operations are generally just as varied as the details 
behind them. 

Prior to CDI, the TINE control system did not have an 
explicit hardware layer for device servers.  For TINE 
device servers which are EPICS [4] IOCs running 
Epics2Tine [5] then the device drivers are automatically 
EPICS drivers (most likely aSyn drivers).  For TINE 
device servers which are DOOCS [6] servers, then the 
device drivers are DOOCS drivers (which follow the 
UNIX device server model).  By and large the vast 
majority of TINE device servers at DESY are native 

TINE servers and follow a “do it yourself” ansatz.  
Namely, one uses the drivers “which come with the 
hardware” or (more likely) one uses the in-house SEDAC 
drivers.  This has always proved a viable approach as the 
bulk of the hardware for HERA and its pre-accelerators is 
SEDAC.  That will change with the advent of PETRA III 
and is already no longer true with FLASH.  There will be 
considerably more front end hardware using CANOpen 
devices and TwinCat devices, along with legacy SEDAC, 
GPIB, rs232, vme, etc. 

Application programmers will then either have to 
become familiar with a bus interface API for each of 
these bus types or rely on CDI to provide a common 
interface for all. 

The Common Device Interface (CDI) first presented in 
PCaPAC 2005 [1] has now reached a new level of 
maturity and is in operation on a couple of test stands at 
DESY.   

CDI API 
As all TINE developers are familiar with the TINE 

client API for accessing data from device servers, CDI 
strives to leverage this knowledge by offering the same 
API for accessing data from the hardware bus.  In this 
case a device server running on a Front End Computer 
(FEC) is a client to its attached hardware. 

CDI itself offers a CDI-native API which is TINE-
similar.  However, by and large developers will want to 
make use of precisely the same TINE client API calls as 
used when accessing data from any other end-point in the 
control system.  

It is worth a bit of time to review the TINE client API, 
as it does not follow the (seemingly ubiquitous) ‘get(), 
set(), and monitor()’ APIs so loved by other control 
systems.  Instead TINE deals with ‘calls’ in the sense of 
Remote Procedure Calls or Remote Method Invocation, 
which are passed via data ‘links’.  A data link can be 
either synchronous or asynchronous and calls a TINE 
property at a TINE endpoint.  A TINE endpoint is in turn 
determined by a namespace consisting of device context, 
device server, and device name.  Schematically, a call will 
attempt to access: 

 
/<context>/<server>/<device> [<property>]. 
 

and will optionally send an input data object to the target 
and/or request an output data object to be returned.  A 
TINE property should rather be thought of as a ‘method’. 
If data is both sent to and received from the target, this 
exchange of data objects occurs atomically.  Note also the 
requested data access (read or write) is separated from the 



data objects.  That is, a ‘read’ call which needs to send 
data to the target is still a ‘read’ call!  

The synchronous API call is ExecLink() (short for 
‘execute link’) and has the following basic prototype: 

 
ExecLink(name, property, dout, din, access, timeout) 
 

The corresponding asynchronous call AttachLink() has 
additional monitoring parameters which supply callback 
information as well as the monitoring ‘mode’, which can 
contain a wide variety of monitoring instructions. 

 
AttachLink(name, property, dout, din, access, pollrate, 

         callback, callbackId, mode) 
 
One can of course wrap these calls with get(), set() and 

monitor(), but will loose generality in doing so.  Indeed 
some general features are then difficult to re-introduce, 
such as a set-get atomic operation or starting a monitor 
with instructions to stop processing until the first update, 
etc. 

Using these API calls to access the hardware to access 
the local hardware becomes a simple matter if the 
endpoint uses the device context “localhost”, and the 
device server “cdi”.  Special parsing of the full device 
name also allows multiple endpoints with a single call.  
For instance, a call to “/localhost/cdi/#1” would access 
only the device registered as device number 1.  On the 
other hand a call to “/localhost/cdi/#1-#100” or 
“/localhost/cdi/#1,#3-#10,#99” would identify the 
individual registered devices and access them as a group. 
The CDI property space include the properties “RECV” 
for receiving (reading) data from the device, “SEND” for 
sending (writing) data to the device, 
“RECV.SEND.ATOM” and “SEND.RECV.ATOM” for 
issuing a pair-wise read-write or write-read operation 
which is guaranteed to be atomic, “RECV.CLBR” and 
“SEND.RECV.CLBR” for returning data which has been 
calibrated according to the registered calibration rules, 
and such properties as “ADDR” and “BUSNAME” which 
return information about the endpoint device. 

For the sake of an example, a CDI monitor call in C 
might look like 

 
dout.dArrayLength = 100; 
dout.dFormat = CF_UINT16; 
dout.data.sptr = rbData; 
AttachLink(“/localhost/cdi/#1-#100”, ”RECV.CLBR,  
                    &dout, NULL, 1000, cb); 
 

which would read devices 1 to 100, calibrate the data, fill 
in the read-back buffer rbData and call the callback 
routine cb at 1 Hz. 

Needless to say, there is a similar interface for other 
languages such as java, Visual Basic, or LabView.  We 
should also point out that CDI devices are registered both 
with a device name and a device number.  The registered 
device name can likewise be used in the above calls, 
which might be desirable when browsing the registered 

hardware remotely.  Generally speaking, a server 
developer will be more inclined to use the device number 
when accessing the attached hardware, since the actual 
name of temperature sensor, sputter pump, BPM or 
whatever in question is mostly irrelevant at that level of 
data access. 

CDI DETAILS 
CDI operates on a plug-and-play basis, and adding a 

new bus interface plug to CDI only involves writing a 
new bus interface plug.  The CDI shared library needs 
only to be compiled and installed once for the platform in 
question.  On windows for instance this will be cdi32.dll 
(or cdi64.dll) and on Unix systems libcdi.so.  Application 
platforms such as java, VB, or LabView will also access 
this same shared library.  

When the library loads, it will look for a CDI bus 
manifest file, which is a simple comma-separated-value 
file and can be a simple as a single column with a list of 
bus plug libraries, as shown below in figure 1. 

 

 
 
Figure 1. Example of a CDI bus manifest file. 
 
 
CDI will then call cdiLoadLib() for each bus plug entry 

in the manifest list, for instance  
 
cdiLoadLib(“cdiCanEsd.dll”); 
 

on windows or  
 
cdiLoadLib(“libcdiCanEsd.so”); 
 

on Unix platforms, etc.  If the library loads successfully, it 
will (via its prologue code) register its name and all of its 
bus handlers with CDI, which itself has no a priori 
knowledge of any hardware bus interface. 

After the manifest has been read, CDI will look for a 
CDI device database and, if found, read it and register all 
devices and device information contained within.  The 
registered information will include the bus name and 
address of the device and any accompanying bus 
parameters (such as bus speed) along with its assigned 
device name and number, as well as data access 
parameters and calibration rules.  The supported 
calibration operations include addition (and subtraction), 
multiplication, and exponentiation along with bit shifting 



and modulo arithmetic on integer values.  There is no 
limit to the number of calibration rules which can be 
applied, and they can be applied in any order, although 
care must be taken when mixing possible floating point 
rules such as multiplication or exponentiation with purely 
integer rules such as modulo arithmetic or bit shifting, so 
that the outcome of the calibration makes sense.  We note 
here for completeness that CDI can operate without a 
database, but then all devices must be registered via API 
calls from with the server application. 

It should also be pointed out that writing a new bus 
plug for CDI is a relatively straightforward process.  CDI 
itself will do nothing but load the bus plug library.  It is 
the duty of the bus plug to register itself with CDI.  There 
are a handful of CDI routines the bus plug should make 
use of in order to function properly.  These are essentially 
all registration routines which provide CDI with the bus 
handlers for accessing its bus hardware (calls to open the 
bus, read and write to the bus, and close the bus).  If a 
new hardware device has a driver API for the target 
platform, then the task of writing a bus plug is no more 
complicated than wrapping the appropriate API calls 
within the CDI bus plug handlers.   

To this end, a “bus” plug does not itself have to 
interface directly to hardware, but could simply provide 
access to more complicated, generic hardware entities, 
such as “stepper motor” or “oscilloscope”.  These entities 
could themselves access the hardware directly (using CDI 
in a nested manner) and incorporate the “business logic” 
which handles the generic functionality the all “stepper 
motors” or all “oscilloscopes” have. 

 

REMOTE CDI 
 
TINE servers which make use of CDI will 

automatically offer the full palette of device access 
available locally to remote clients. In other words, CDI 
will export a de facto device server (unless operating in 
stand-alone mode) which makes the hardware available 
for remote access. A remote client wishing to access the 
device hardware directly can do so by contacting the 
endpoint using the device context of the registered TINE 
server and the device server name given by the Front End 
Controller (FEC) name appended with the suffix “.CDI”.  
In other words, a Beam Position Monitor FEC, called 
BPM which registers itself in context PETRA will 
automatically export a device server called BPM.CDI also 
in context PETRA.   The local server will access its 
hardware using, for example, the endpoint 

 
“/localhost/cdi/#1-#100” 
 

whereas a remote client could access the hardware via 
 
“/PETRA/BPM.CDI/#1-#100” 
 

Indeed, remotely it might make more sense to use device 
names and issue the call as 

 
“/PETRA/BPM.CDI/BPM/OR1 – NL25” 
 

assuming that “OR1” is the registered name for device 1 
and “NL25” is the registered name for device 2. 

 
Although these remote services are automatically 

present and do not require coding, accessing the hardware 
devices remotely in this manner should be thought of as a 
debugging service. On some (rare) occasions, when the 
server itself has  no more complicated duties than to read 
out a number of, say, temperature sensors, calibrate the 
results and offer them, then the default CDI server can be 
used almost as is (It would probably be prudent in this 
case to alias the CDI property “RECV.CLBR” with 
“Temperature”, for example).   

CURRENT STATUS 
CDI is now being tested at DESY for isolated but 

relevant cases in HERA and PETRA, and is so far proving 
to be stable as easy to use as advertised.  The existing bus 
plugs include three varieties of SEDAC bus plugs (which 
suggests that these should rather be thought of as bus 
interface plugs) for both Windows and Linux,  two 
varieties of CANOpen for Windows and Linux, RS232 
for Windows and Linux and most recently for the 
TwinCat interface from Beckoff [7] (for Windows).  

Current efforts will now focus on providing database 
management tools which allow rapid and straightforward 
creation and checking of the CDI database.   
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