
Using the Common Device Interface in TINE

Philip Duval and Honggong Wu, DESY MST, Hamburg, Germany

Abstract
 An accelerator control system must in general support a
variety of hardware devices and field busses. The
Common Device Interface (CDI) is designed to provide
the control system engineer with an easy-to-use-and-
understand interface for accessing data from the hardware
devices, independent from the underlying field bus. The
concept behind CDI was initially presented in PCaPAC
2005[1]. Since that time CDI has undergone numerous
refinements which render the writing of a plug-and-play
CDI bus plug a straightforward procedure on the one
hand, and allow the server developer an intuitive interface
for acquiring or setting hardware data either
synchronously or asynchronously and from either single
or multiple devices.

We note here some of the differences in philosophy
between CDI and asynDriver [2] (used by EPICS) and
DOOCS[3] device drivers, and we report on the first
operational results using CDI on several different
TINE[4] platforms (including, Windows, Linux, and
Java). Although CDI can be trivially hooked into a TINE
server and offers the TINE client interface to the
hardware, it is not tightly bound to TINE and could in
principle be used independently.

INTRODUCTION
The access and control of hardware devices is typically

achieved via fundamental ‘Get’ and ‘Set’ operations,
where a ‘Get’ is used to acquire data or status information
from the hardware bus and a ‘Set’ is used to change
control modes or download data to the hardware. The
details behind these simple operations are in general quite
varied for disparate bus types. Some bus drivers offer
single-channel read and write calls while others utilize
duplex channels for read and write. Some bus drivers are
single master, others are multi-master. The bus data
format can also be different. For instance, RS232 deals
with character string data, whereas SEDAC deals with
short integers. Hence the interfaces to these ‘Get’ and
‘Set’ operations are generally just as varied as the details
behind them.

Prior to CDI, the TINE control system did not have an
explicit hardware layer for device servers. For TINE
device servers which are EPICS [4] IOCs running
Epics2Tine [5] then the device drivers are automatically
EPICS drivers (most likely aSyn drivers). For TINE
device servers which are DOOCS [6] servers, then the
device drivers are DOOCS drivers (which follow the
UNIX device server model). By and large the vast
majority of TINE device servers at DESY are native

TINE servers and follow a “do it yourself” ansatz.
Namely, one uses the drivers “which come with the
hardware” or (more likely) one uses the in-house SEDAC
drivers. This has always proved a viable approach as the
bulk of the hardware for HERA and its pre-accelerators is
SEDAC. That will change with the advent of PETRA III
and is already no longer true with FLASH. There will be
considerably more front end hardware using CANOpen
devices and TwinCat devices, along with legacy SEDAC,
GPIB, rs232, vme, etc.

Application programmers will then either have to
become familiar with a bus interface API for each of
these bus types or rely on CDI to provide a common
interface for all.

The Common Device Interface (CDI) first presented in
PCaPAC 2005 [1] has now reached a new level of
maturity and is in operation on a couple of test stands at
DESY.

CDI API
As all TINE developers are familiar with the TINE

client API for accessing data from device servers, CDI
strives to leverage this knowledge by offering the same
API for accessing data from the hardware bus. In this
case a device server running on a Front End Computer
(FEC) is a client to its attached hardware.

CDI itself offers a CDI-native API which is TINE-
similar. However, by and large developers will want to
make use of precisely the same TINE client API calls as
used when accessing data from any other end-point in the
control system.

It is worth a bit of time to review the TINE client API,
as it does not follow the (seemingly ubiquitous) ‘get(),
set(), and monitor()’ APIs so loved by other control
systems. Instead TINE deals with ‘calls’ in the sense of
Remote Procedure Calls or Remote Method Invocation,
which are passed via data ‘links’. A data link can be
either synchronous or asynchronous and calls a TINE
property at a TINE endpoint. A TINE endpoint is in turn
determined by a namespace consisting of device context,
device server, and device name. Schematically, a call will
attempt to access:

/<context>/<server>/<device> [<property>].

and will optionally send an input data object to the target
and/or request an output data object to be returned. A
TINE property should rather be thought of as a ‘method’.
If data is both sent to and received from the target, this
exchange of data objects occurs atomically. Note also the
requested data access (read or write) is separated from the

data objects. That is, a ‘read’ call which needs to send
data to the target is still a ‘read’ call!

The synchronous API call is ExecLink() (short for
‘execute link’) and has the following basic prototype:

ExecLink(name, property, dout, din, access, timeout)

The corresponding asynchronous call AttachLink() has
additional monitoring parameters which supply callback
information as well as the monitoring ‘mode’, which can
contain a wide variety of monitoring instructions.

AttachLink(name, property, dout, din, access, pollrate,

 callback, callbackId, mode)

One can of course wrap these calls with get(), set() and

monitor(), but will loose generality in doing so. Indeed
some general features are then difficult to re-introduce,
such as a set-get atomic operation or starting a monitor
with instructions to stop processing until the first update,
etc.

Using these API calls to access the hardware to access
the local hardware becomes a simple matter if the
endpoint uses the device context “localhost”, and the
device server “cdi”. Special parsing of the full device
name also allows multiple endpoints with a single call.
For instance, a call to “/localhost/cdi/#1” would access
only the device registered as device number 1. On the
other hand a call to “/localhost/cdi/#1-#100” or
“/localhost/cdi/#1,#3-#10,#99” would identify the
individual registered devices and access them as a group.
The CDI property space include the properties “RECV”
for receiving (reading) data from the device, “SEND” for
sending (writing) data to the device,
“RECV.SEND.ATOM” and “SEND.RECV.ATOM” for
issuing a pair-wise read-write or write-read operation
which is guaranteed to be atomic, “RECV.CLBR” and
“SEND.RECV.CLBR” for returning data which has been
calibrated according to the registered calibration rules,
and such properties as “ADDR” and “BUSNAME” which
return information about the endpoint device.

For the sake of an example, a CDI monitor call in C
might look like

dout.dArrayLength = 100;
dout.dFormat = CF_UINT16;
dout.data.sptr = rbData;
AttachLink(“/localhost/cdi/#1-#100”, ”RECV.CLBR,
 &dout, NULL, 1000, cb);

which would read devices 1 to 100, calibrate the data, fill
in the read-back buffer rbData and call the callback
routine cb at 1 Hz.

Needless to say, there is a similar interface for other
languages such as java, Visual Basic, or LabView. We
should also point out that CDI devices are registered both
with a device name and a device number. The registered
device name can likewise be used in the above calls,
which might be desirable when browsing the registered

hardware remotely. Generally speaking, a server
developer will be more inclined to use the device number
when accessing the attached hardware, since the actual
name of temperature sensor, sputter pump, BPM or
whatever in question is mostly irrelevant at that level of
data access.

CDI DETAILS
CDI operates on a plug-and-play basis, and adding a

new bus interface plug to CDI only involves writing a
new bus interface plug. The CDI shared library needs
only to be compiled and installed once for the platform in
question. On windows for instance this will be cdi32.dll
(or cdi64.dll) and on Unix systems libcdi.so. Application
platforms such as java, VB, or LabView will also access
this same shared library.

When the library loads, it will look for a CDI bus
manifest file, which is a simple comma-separated-value
file and can be a simple as a single column with a list of
bus plug libraries, as shown below in figure 1.

Figure 1. Example of a CDI bus manifest file.

CDI will then call cdiLoadLib() for each bus plug entry

in the manifest list, for instance

cdiLoadLib(“cdiCanEsd.dll”);

on windows or

cdiLoadLib(“libcdiCanEsd.so”);

on Unix platforms, etc. If the library loads successfully, it
will (via its prologue code) register its name and all of its
bus handlers with CDI, which itself has no a priori
knowledge of any hardware bus interface.

After the manifest has been read, CDI will look for a
CDI device database and, if found, read it and register all
devices and device information contained within. The
registered information will include the bus name and
address of the device and any accompanying bus
parameters (such as bus speed) along with its assigned
device name and number, as well as data access
parameters and calibration rules. The supported
calibration operations include addition (and subtraction),
multiplication, and exponentiation along with bit shifting

and modulo arithmetic on integer values. There is no
limit to the number of calibration rules which can be
applied, and they can be applied in any order, although
care must be taken when mixing possible floating point
rules such as multiplication or exponentiation with purely
integer rules such as modulo arithmetic or bit shifting, so
that the outcome of the calibration makes sense. We note
here for completeness that CDI can operate without a
database, but then all devices must be registered via API
calls from with the server application.

It should also be pointed out that writing a new bus
plug for CDI is a relatively straightforward process. CDI
itself will do nothing but load the bus plug library. It is
the duty of the bus plug to register itself with CDI. There
are a handful of CDI routines the bus plug should make
use of in order to function properly. These are essentially
all registration routines which provide CDI with the bus
handlers for accessing its bus hardware (calls to open the
bus, read and write to the bus, and close the bus). If a
new hardware device has a driver API for the target
platform, then the task of writing a bus plug is no more
complicated than wrapping the appropriate API calls
within the CDI bus plug handlers.

To this end, a “bus” plug does not itself have to
interface directly to hardware, but could simply provide
access to more complicated, generic hardware entities,
such as “stepper motor” or “oscilloscope”. These entities
could themselves access the hardware directly (using CDI
in a nested manner) and incorporate the “business logic”
which handles the generic functionality the all “stepper
motors” or all “oscilloscopes” have.

REMOTE CDI

TINE servers which make use of CDI will

automatically offer the full palette of device access
available locally to remote clients. In other words, CDI
will export a de facto device server (unless operating in
stand-alone mode) which makes the hardware available
for remote access. A remote client wishing to access the
device hardware directly can do so by contacting the
endpoint using the device context of the registered TINE
server and the device server name given by the Front End
Controller (FEC) name appended with the suffix “.CDI”.
In other words, a Beam Position Monitor FEC, called
BPM which registers itself in context PETRA will
automatically export a device server called BPM.CDI also
in context PETRA. The local server will access its
hardware using, for example, the endpoint

“/localhost/cdi/#1-#100”

whereas a remote client could access the hardware via

“/PETRA/BPM.CDI/#1-#100”

Indeed, remotely it might make more sense to use device
names and issue the call as

“/PETRA/BPM.CDI/BPM/OR1 – NL25”

assuming that “OR1” is the registered name for device 1
and “NL25” is the registered name for device 2.

Although these remote services are automatically

present and do not require coding, accessing the hardware
devices remotely in this manner should be thought of as a
debugging service. On some (rare) occasions, when the
server itself has no more complicated duties than to read
out a number of, say, temperature sensors, calibrate the
results and offer them, then the default CDI server can be
used almost as is (It would probably be prudent in this
case to alias the CDI property “RECV.CLBR” with
“Temperature”, for example).

CURRENT STATUS
CDI is now being tested at DESY for isolated but

relevant cases in HERA and PETRA, and is so far proving
to be stable as easy to use as advertised. The existing bus
plugs include three varieties of SEDAC bus plugs (which
suggests that these should rather be thought of as bus
interface plugs) for both Windows and Linux, two
varieties of CANOpen for Windows and Linux, RS232
for Windows and Linux and most recently for the
TwinCat interface from Beckoff [7] (for Windows).

Current efforts will now focus on providing database
management tools which allow rapid and straightforward
creation and checking of the CDI database.

REFERENCES
[1] R. Bacher, et. al., “Common Device Access for

Accelerator Controls”, Proceedings PCaPAC 2005.
[2] M. Kraimer, E. Norum, and M. Rivers, “asynDriver:

Asynchronous Driver Support”,
http://www.aps.anl.gov/epics/modules/soft/asyn.

 [3] http://tine.desy.de.
 [4] http://www.aps.anl.gov/epics.
 [5] Z. Kakucs, P. Duval, M. Clausen, “An EPICS to

TINE Translator”, ICALEPCS 2001.
 [6] http://doocs.desy.de
 [7] http://www.beckhoff.com/english

http://www.aps.anl.gov/epics/modules/soft/asyn
http://tine.desy.de/

	INTRODUCTION
	CDI API
	CDI DETAILS
	REMOTE CDI
	CURRENT STATUS
	REFERENCES

