

CONTROL SYSTEM INTEROPERABILITY, AN EXTREME CASE:

MERGING DOOCS AND TINE

P. Duval, A. Aghababyan, O. Hensler, K. Rehlich, DESY, Hamburg, Germany

Abstract
In controlling large facilities one is rarely able to

manage all controllable elements via a common control

system framework. When the standard framework must

deal with numerous 'foreign' elements it is often

worthwhile to adopt a new framework, rather than

'disguising' such components with a wrapper. The

DOOCS[1] and TINE[2] control system frameworks fall

into this scenario. Both systems have a device server

oriented view, which made early mapping attempts

(begun in 2000) immediately successful. Transparent

communication, however, is but a small (albeit important)

part of the control system merger currently taking place.

Both systems have well-established central services (e.g.

archiving and alarms), and possess a general 'culture'

which might dictate to a large extent how something is

actually 'done'. The long term goal of the DOOCS/TINE

merger is to be able to make use of any tool, from either

the DOOCS or TINE toolbox, on any control system

element.

We report here on our progress to date, concentrating

on the REGAE accelerator, and plans for the XFEL

accelerator (to begin commissioning in 2015).

INTRODUCTION

‘Interoperability’ is a bit of a trendy word these days

and it is important to be clear at the outset what we mean

by ‘control system interoperability’.

Any control system framework will likely provide

interfaces to popular scientific and engineering software

such as MatLab and LabView as well as popular user

utilities such as Python, Java, .Net, and the like. If these

interfaces are not native to the software in question then

one speaks of ‘interoperability’ with regard to allowing

the control system to interface (‘interoperate’) with such

external software packages. In this paper, however, we

refer to ‘interoperability’ as being that between the

different control system frameworks themselves.

 Since circa 1990 control system frameworks have

been typically recognized by their names rather than, say,

‘the control system they use at KEK’. Likewise there has

been a strong tendency for institutes to adopt an existing

controls framework, rather than ‘inventing their own’.

The most popular of these is EPICS[3]. There are

nonetheless a large number of institutes which base

accelerator control on something else, for example

TANGO[4], ACS[5], STARS[6] or, our primary focus

here, TINE[2] and DOOCS[1].

Consequently when the primary control system is not,

for instance, EPICS it often occurs that, over the course of

operations, some provision must be made to interface to

exotic EPICS elements which invariably creep into the

system. This is in fact one of the primary motivations for

pursuing interoperability. Experiments and test equipment

from other facilities can suddenly introduce timelines, not

to mention complexity, which necessitate seamless, rapid,

and robust integration of foreign components into a

control system. Epics2tine [7] is one of the first attempts

to do this systematically. Since then, a number of

translation interfaces and gateways such as tango2tine,

epics2tango, etc. have been available.

In this vein, a doocs2tine translation layer was

embedded directly into the DOOCS libraries in the year

2000. This constituted the primary step in the eventual

control system merger now taking place.

Below we will first discuss what the interoperability

between control system frameworks might mean in

general and then give specific details concerning what it

means to merge two relatively distinct control system

frameworks. We note here that this goes far beyond the

simple ability to ‘trade data’.

CONTROL SYSTEM FRAMEWORK

INTEROPERABILITY

There are in principal three ways to go concerning the

interoperability between two distinct control system

frameworks [8]. If System A refers to the primary control

system framework, then each of these interoperability

methods amounts to translating requests from System A

into System B language, obtaining results, which are then

translated back to System A language. This can be

achieved by a stand-alone gateway process, by

incorporating the translation layer directly within the

System A client-side API, or by incorporating the

translation layer within the System B server-side API. The

relative merits of these approaches have been discussed

before [8]. Solutions such as the Joint Controls Project

(JCOP) [9], Control System Studio (CSS) [10], or java

DOOCS Data Display (jddd) [11] focus on the second

method listed above. We note here that the third method,

server-side translation layers, being the most invasive is

also the most demanding, as the introduction of any new

software (the translation layer) on the front-end elements

places these critical components at new risk.

Nevertheless, it is precisely this third method which

allows a control system merger to take place in the first

place and is the key to the DOOCS/TINE merger we now

describe below.

MERGING DOOCS AND TINE

Device Servers versus Databases

Control system frameworks have a general perspective

concerning the accelerator control points. Some, such as,

EPICS or VISTA [12], have a database view of the

controllable elements, where one thinks of ‘getting’ or

‘setting’ (or ‘monitoring’) some item in a database.

Others, such as TANGO, TINE, and DOOCS, have a

device server view of the controllable elements, which are

regarded as devices at some location. Here one thinks of

calling the methods of some device. That both TINE and

DOOCS both have a device server perspective makes the

task of merging the two considerably less daunting.

DOOCS and TINE also have a three-tier naming

hierarchy to identify a ‘device’ along with a property

name to identify a ‘method’. Unlike DOOCS, however,

TINE elements can also take on a ‘property server’ view,

whereby a server does not represent an interface to a

device collection so much as a service with properties,

each of which in turn might refer to a different collection

of keywords. We shall come back to this point below.

Request-Response Translation

The request-response translation between DOOCS and

TINE is straightforward as long as both systems agree on

the contents of the data being transferred. The early

doocs2tine layer in fact concentrated on ensuring that the

set of data types used in DOOCS were matched in TINE

and vice versa. Besides the standard primitive data types,

both systems also provide compound data types for

atomic transfer (e.g. a name, a float, and an integer value).

Such data types must of course exist in both systems.

TINE also allows user-defined structures, which are not

directly supported in DOOCS and presents a potential

problem. However, the individual fields of a TINE

structure are accessible via the normal DOOCS API.

At this point in the merger (~2001), all DOOCS servers

are now ‘visible’ and accessible to TINE clients and all

TINE servers are visible and accessible to DOOCS

clients. That is, we now have the ability to ‘trade data’,

and in a systematic way. In fact, the full gambit of the

efficient transport techniques available in TINE (e.g.

asynchronous communication, contract coercion [13]) are

now available in DOOCS via the TINE protocol.

Culture Shock

In practice, although both systems offer rich client

programing, Servers in a DOOCS-centric facility such as

FLASH are usually accessed via ddd or jddd [11] panels,

which are ‘simple’ clients with data acquisition and

display widgets. Servers in a TINE-centric facility such

as PETRA III are usually accessed via rich clients written

in java, using RAD (Rapid Application Development)

tools such as ACOP [14]. A successful merger implies

that a client developer can remain in his culture of

expectations and be unaware of the idiosyncrasies of

either framework.

The panel approach tends to place the burden on the

server developer to provide data ‘ready to display’, which

is not a bad thing. It also tends to decouple the panel

developer from making data update decisions. In the

early days, a ddd panel would synchronously poll a TINE

server even though a more efficient asynchronous

communication was available. In addition, TINE server

developers have been known to overload specific method

calls, delivering differently encoded data based on the

requested data type and input. A panel application

accessing such a method will only access the ‘default’

method call.

Such considerations really only provide caveats to the

client application developer and do not impact per se on a

merger of the two systems. What does impact more

strongly is the inherent control system browsing within

the panel builders and other browsing tools. Here naming

conventions and cultures along with browsing logic play a

strong role in meeting expectations.

As noted above, TINE also supports ‘property servers’.

Browsing such servers requires querying the keywords of

a property as opposed to querying the properties of a

device, as is the case with device servers. Although the

naming hierarchy remains the same, such browsing logic

must be incorporated in the relevant DOOCS utilities in a

DOOCS-centric system with TINE property servers.

Infrastructure

Assuming we have addressed request-response

mapping and the culture shock aspects of client

applications communicating with a mixture of DOOCS

and TINE servers, can we claim to have merged the two

control systems? We have of course achieved something

remarkable, but the answer to this question remains a

resounding ‘no’. What still needs to be considered is the

infrastructure aspects behind the frameworks.

Archiving

An accelerator control system will have an archive

system, an alarm system, naming services, and security to

go along with the general culture and behavioral aspects

and expectations of a user within either a DOOC-centric

or TINE-centric facility.

Both DOOCS and TINE provide a local history

subsystem, where the history of specific properties can be

acquired directly from the servers, and there are utilities

in both DOOCS and TINE which can access and display

this information. However, each utility is expecting

functionality which may or may not be present depending

on the pedigree of the server. At the time of this writing,

the expectations of either culture are approximately only

50 per cent met, with archive reading utilities often

making ‘if that didn’t work, then try this’ decisions. We

will not discuss the TINE Central or Event archive

systems nor the DOOCS DAQ system at this juncture,

except to note that these additional add-on services do not

reflect on the merger status.

Alarms

Alarm mapping was introduced in 2009 and is by and

large successful. We note that DOOCS servers ‘push’

alarm information to a central server, whereas TINE

servers set alarms which are then ‘pulled’ by a central

server. The alarm mapping consists then of DOOCS

servers setting alarms for access via the TINE central

alarm server and for the TINE central alarm server to

push selected alarms to the DOOCS central alarm server.

The alarm utilities of either system can then be used to

view alarms.

Naming Services

Naming servers for both DOOCS and TINE are similar

in that the address of a specific device server, based on its

context and server name are resolved centrally with the

results being returned to the caller. Device and property

information is then obtained directly from a specific

server, meaning that the server must be on-line to receive

that latter information. The principal complication to this

scenario occurs when the device server in question is not

a device server residing on a single host but is instead a

device group. In DOOCS such configurations are

handled administratively, whereas in TINE they are

usually handled via plug-and-play. The group server

mapping is done seamlessly as long as the proper

information is provided within a DOOCS server’s

configuration file.

Security

Security can be a real show-stopper. DOOCS security

is based on a unix-style gid and uid (group ID and user

ID) access mask of the caller, whereas TINE security is

based on the caller’s user name and/or the network

address. Where gid and uid information is unavailable,

DOOCS servers attempt to match the caller’s user name

with available NIS or LDAP information in order to

ascertain it. This approach works fine except in the case

where a TINE middle layer server is attempting to issue a

command to a DOOCS server. In such cases the user

name of the caller is then the TINE Middle-Layer FEC

(Front End Controller) name, which is definitely not a

user name to be found in any NIS or LDAP table. Thus

commands from such a Middle Layer are rejected. To

overcome this difficulty, TINE servers now note whether

a specific call is directed at a DOOCS server and if so

supply the original user name of process in the command

request.

Turing Tests

On could speak of undergoing Turing tests at various

levels in order to determine the state of a merged system.

Would a client programmer using his favorite

development tool be able to distinguish between a

DOOCS server and a TINE server? Do utility applications

such as alarm or archive viewers behave differently

depending on the flavor of the framework being used?

Do remote process control applications, such as front end

watchdogs, depend in any way on which kind of server

process is being monitored?

The tacit goal is of course to be able to answer ‘no’ to

all of the above questions. In reality an expert will

always be able to detect differences. However the degree

to which these Turing tests are being passed is sometimes

remarkable, particularly as concerns the lay user.

To be sure, a browsing tool suddenly indicating a

property server is a dead giveaway that the target must be

a TINE server, as would be a target property indicating a

structure data type. Alarm viewing applications on the

other hand do not readily distinguish between DOOCS

and TINE alarms. And although archive functionality

mapping is not yet complete archive viewing applications

likewise do a remarkably good job displaying data. One

can now, for instance, drag and drop from a jddd panel

into the TINE archive viewer. Framework independent

remote process control is currently being addressed.

Status

FLASH is a DOOCS-centric facility but has long had

native TINE servers in control, notably for the magnets.

PETRA-III is a TINE-centric facility but likewise makes

use of native DOOCS servers, notably in the vacuum sub-

system. The ‘exotic’ cases here have over the years had

their (mostly minor) issues, but could always be dealt

with on a special basis.

The Relativistic Electron Gun for Atomic Exploration

(REGAE) facility at DESY provides an excellent test bed

for determining our progress in the DOOCS/TINE merger

as it consists of a good mixture of TINE and DOOCS

servers, as well as a good mixture of TINE rich client

applications, jddd panels, and MatLab applications in the

control room. In REGAE, virtually all DOOCS servers

are communicating only via the TINE protocol, even

when contacted by a jddd panel.

After an initial period of ‘growing pains’, operations in

the REGAE control room have been smooth for well over

a year, demonstrating the current success of the merger.

This bodes well for the X-ray Free Electron Laser (XFEL)

project currently underway at DESY.

REFERENCES

[1] DOOCS; http://doocs.desy.de

[2] TINE; http://tine.desy.de

[3] EPICS; http://www.aps.anl.gov/epics

[4] TANGO; http://www.tango-controls.org

[5] ACS; http://www.cosylab.com/solutions/ICT/ACS/

[6] STARS; http://pfwww.kek.jp/stars

[7] “An EPICS to TINE Translator”, Z. Kakucs, et al., PCaPAC

2000 Proceedings.

[8] “The Babylonization of Control Systems”, P. Duval et al.,

ICALEPCS 2003 Proceedings.

[9] JCOP; http://en-dep.web.cern.ch/en-dep/internal/JCOP/

[10] “The CSS Story”, M. Clausen et al., These proceedings.

[11] jddd; http://jddd.desy.de

[12] VISTA; http://www.vista-control.com

[13] “The TINE Control System Protocol: How to Achieve

High Scalability and Performance”, P. Duval and S. Herb,

PCaPAC 2010 proceedings.

[14] ACOP; http://public.cosylab.com/acop/site/

http://www.vista-control.com/

