
CONTROL SYSTEM
INTEROPERABILITY

AN EXTREME CASE:

Merging DOOCS and TINE

P. Duval, A. Aghababyan, O. Hensler, K.

Rehlich, DESY, Hamburg, Germany

Interoperability ?
• With commercial packages …

• Wrapping/Binding non-native interfaces ?
o e.g. How to interface EPICS with LabView ?

• or MatLab, Python, Perl, Root, etc.

• Just ask COSYLAB to do it ?

o Use the interoperability tools that come with the package.

• Java + JNI

• .NET + System.Runtime.InteropServices

• MatLab + MEX interface

• LabView + external library support

• etc.

• Go native ?
o e.g. STARS has a native Perl interface.

o Most have a native java interface.

o Not always practical !

Interoperability ?
• With other control system frameworks …

o “We love our EPICS and they love their TANGO …”

o What to do?

• Gateways or translation layers that ‘trade data’.
o epics2tango, tango2epics …

• Assume as given:
o control system frameworks manage interoperability to commercial

software.

• Concentrate on:
o interoperability between the control system frameworks !

• Why worry about this?

Motivation
• Warring factions within a single institute or project !

o And those at the top who want results …

o (But this never happens, right?)

• Experiments, Test Equipment from other institutes
o Sudden deadlines to get something new into the system …

o Recent example at DESY:

• OLYMPUS experiment brought some detector software from MIT with

EPICS interface.

• Immediate integration with the rest of the control system via

epics2tine.

Motivation
• Include useful features of another system

o e.g. STARS

• excellent system for beamline control

• use STARS-TINE bridge for multicasting BEAM parameters to the 70 end

stations at Photon Factory in KEK.

• Major Release upgrades
o e.g. TACO and TANGO

• And if you’re not 100% EPICS
o you’ll probably have to interoperate with it.

DOOCS / TINE
• Both are mature control systems

o Primarily in use at DESY

o But used at other institutes and industry as well

o (No, the entire rest of the control-system world does NOT use either EPICS or
TANGO).

• TINE:
o An ISOLDE spin-off (CERN ~1991)

o Transport is socket based

• DOOCS:
o Early collaboration with TACO (~1995)

o Transport is SunRPC based

• ALL accelerator control at DESY is either TINE or DOOCS.
o Additional motivation to have seamless interoperation.

o (Yes, you will find EPICS in cryogenics and infrastructure and TANGO at the
HASYLAB beamlines).

• Strategies for interoperability …

How best to ‘trade data’ ?

• System A (oranges) and System B (apples).

• Have to deal with apples and oranges one way or another!

o Translate System A request into System B language:

o Translate System B response back to System A language:

o 1. Apple to Orange ‘gateways’
• lives as an external process

o 2. Apple to Orange ‘plugs’
• live on ‘Orange’ clients

o 3. Apple to Orange ‘translators’
• live on ‘Apple’ servers

Translation Layer
• Method 1 (gateway)

o Requires setting up an extra process for each target server.

o Connectivity problems harder to trace ?

o Least invasive

• Method 2 (client-side plugs)
o Popular: JCOP, cdev, abeans, CSS, jddd, ACOP, …

o Available features depend on target server !

• e.g. asking a server to multicast data would only work on a TINE

server!

• Method 3 (server-side translator)
o Most invasive

• New software (new risks) on critical server components.

o Best method for merging ALL control system features.

Frameworks Models
• Brief Review:

• 1: Database Model
o EPICS, VISTA (i.e. VSystem not the OS)

o ‘get’, ‘set’, ‘monitor’ elements in a database.

• 2: Device Server Model
o TANGO, DOOCS, ACS, STARS, TINE

o Server offers methods to a collection of ‘devices’ at some location.

• 3: Property Server Model
o STARS, TINE
o Server is a service with properties, which can have keywords.

• How to map e.g. model 1 to model 2 and vice
versa ?

DOOCS/TINE Merger
• Uses server-side translation ! (Method 3)

o All TINE features available to a DOOCS server !

• DOOCS device servers maps perfectly into TINE

device servers and vice versa!

• TINE property servers present a browsing issue with

some DOOCS utilities.

o Straightforward to deal with !

Server-side Translation
• DOOCS DAQ protocol

• independent issue

• does not impact the DOOCS/TINE merger

• DOOCS transport based on SunRPC
o Synchronous polling and scalability problems ?

• Aside:

o TACO later (post-DOOCS collaboration) introduced inverted
SunRPC client-servers to accommodate asynchronous transfer.

o TACO + SunRPC gave way to TANGO + CORBA

• DOOCS: Make use of TINE from the merger

• TINE:
o Asynchronous transfer

o QoS steering (UDP, TCP, Multicast)

o Contract coercion

Contract Coercion
• “Joe the Programmer” is driving the data flow

o The ability to do things efficiently (e.g. asynchronous updates on event)

does NOT mean application programmers will do it this way!

o Synchronous calls are easy to understand and program !

• Panel builders (jddd, MEDM, …) designed to be

simple.
o Optimized and efficient transport is NOT simple !

o How is “Joe the Programmer” using the panel builder?

• What does your MatLab interface look like?
o Note: Yes, you can do callbacks in MatLab !

• e.g.
o Try synchronously polling all 300 BPMs individually at 10 Hz within some

client application and then run the application on 10 different stations !

A Server takes control of its Clients

Client

-Give me property “Pressure” for
pump “OL146.2”

- Ok then, monitor “Pressure” for
pump “OL146.2”

- Ok then, monitor “Pressure” for
all pumps

- Ok then, I’ll listen for the
multicast

Server

-No! You’ll have to monitor
this !

-No! You’ll have to monitor the
entire MCA (look for index 17)

- Ok, but I’m going to multicast
it!

Example: doing 1 thing for 1 effective client instead of 600 things for 10

TINE: Contract Coercion in the transport protocol

Let the Merger Begin …
• Step 1: request-response mapping

o Data type mapping

• primitives exist in both frameworks

• compound data types must ALL map !

o e.g. NAME-FLOAT-INT32 as an atomic data type

• TINE offers user-defined data types (structures)

o DOOCS doesn’t

o DOOCS -> TINE not a problem

o TINE -> DOOCS ?

• structure fields are accessible !

o Dispatch mapping

• client is calling property P, is sending type T1, wants type T2, access = A

• can now use TINE scheduling in DOOCS !

o Error/Status code mapping

• Status = 0 is always ‘success’

• But: can send data with status (e.g. here’s the data, but it’s not calibrated)

DOOCS/TINE Merger
• Step 2: transport mapping

o client Side API

• should support asynchronous communication

• can disguise asynchronous listeners with a synchronous façade.

• asynchronous API should be rich enough to support ALL features

o e.g. How to launch an asynchronous data link but WAIT for the

initial callback ?

• Is that it? Are we done?
o With a gateway you might even be done at Step 1!

DOOCS/TINE Merger
• We’re done when a random TINE or DOOCS server

passes the Duck Test using a random TINE or DOOCS

control system utility.

• i.e. A kind of ‘Turing Test’.

“If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably
is a duck”

DOOCS/TINE Merger
• Step 3: central Service and Utilities

o Naming

o Archiving

o Alarm

o Security

o Remote Management

o etc.

DOOCS/TINE Merger
• DOOCS Naming

o /facility/server/location/property

o Equipment Name Server (ENS)

provides facility and server(s)

o No separate subsystem

identification.

• Subsystem is usually applied

to the facility.

• Server “Modulator” in

“FLASH.RF” instead of

“FLASH”

o Strict OO Device Server model

• locations have properties

o Meta Properties not principally

distinguished from Properties

• “P” is on the same footing

as “P.EGU” or “P.HIST”

• TINE Naming
o /context/server/device/property

o Equipment Name Server (ENS)

provides context and server(s)

o Separate subsystem

identification! (not part of name

space)

o OO Device Server model

• devices have properties

o Or Property Server model

• properties have keywords

o Meta Properties are distinguished

from Properties

• “P” is NOT on the same

footing as “P.EGU” or “P.HIST”

DOOCS/TINE Naming
DOOCS
 ‘RPCtest’ Utility:

TINE
‘Instant Client’ :

Analogous to
TANGO + jive
EPICS + ?

DOOCS/TINE Archiving
• DOOCS

o Independent DAQ system

• can also tag ‘events’.

o Local archiving of specific

(configured) properties

o Record = single channel

o Accessible via “<P>.HIST”

meta-property

o No sampling raster

o Thumbnails available

• fast access of general

information over long time

intervals

• TINE
o Central Event Archive

o Local archiving of specific
(configured) properties

o Record = single channel or
multi-channel arrays !

o Accessible via “<P>.HIST”
meta-property

o Sampling raster configurable

o Automatic raster for optical
zooming

• “points of interest” insert
peaks and valleys.

o Central archiving of specific
properties

• Many possible filters

DOOCS/TINE Archiving
DOOCS local
histories
example :

DOOCS/TINE Archiving
TINE
Archive Viewer

Optical or
Digital
Zooming,
Trends and
Snapshots,
Movies,
Correlations,
FFT, Fits, etc.

DOOCS/TINE Archiving

Drag-and-drop
between the two:
No mean feat!

DOOCS/TINE Alarms
• DOOCS Alarms

o Devices have alarms

o 5 severity levels

o Push system

o Alarms have an status/error

string

o Also set TINE Alarm on the

server side

• error string -> alarm data

• TINE Alarms
o Devices have alarms

o 15 severity levels

• 4 principal categories

o Pull system

o Alarms have data (up to 64
bytes)

o Also push DOOCS Alarm at the

Central Alarm Server.

DOOCS/TINE Alarms
DOOCS
Alarm / Info
Display :

DOOCS/TINE Alarms
TINE
Alarm
Viewer:

DOOCS/TINE Security
• DOOCS Security

o Open READ

o WRITE (set) calls must pass

security !

o Server Level or Property Level

o UNIX style

• gid, uid of the caller
determines access rights

o Non-UNIX systems

• Locate caller ‘user name’

in a nis (ldap) database
to ascertain gid, uid.

• TINE Security
o Open READ (default)

• Can configure ‘exclusive’

READ

o WRITE (set) calls must pass

security !

o Server level, property level or

device level.

o Compare user name and

address of caller to the
configured ACL tables.

o Can acquire an Access Lock

DOOCS/TINE
Remote Management

• DOOCS
o Process watchdog

• Unix-like or windows

o Special DOOCS server

o Monitors process statistics

o (re)starts missing server

processes

o Allows remote stop and start

• TINE
o Process watchdog

• Different solutions for

o Unix-like

o Windows

o VxWorks

o DOS

o Monitors process statistics

o (re)starts missing server

processes.

o Allows remote stop and start.

DOOCS/TINE
Remote Management

DOOCS
Watchdog
Panel :

DOOCS/TINE
Remote Management

TINE FEC
Remote
Panel :

DOOCS/TINE
Remote Management

TINE: attachfec /REGAE/VAC.ION_PUMP (a native DOOCS server !)

Culture Shock
• DOOCS

o Generally use jddd panels

• Simple clients with display

widgets

o MatLab, etc.

o No explicit multi-channel
support

• But heavy reliance on

wildcards and filters.

o No user-defined structures
(hard to attach to a widget)

o Names tend to be

• ALL uppercase with
underscores

• e.g. “PROPERTY_ONE”

• TINE
o Generally use rich clients

(java, .NET)

• RAD tools (ACOP beans)

o MatLab, etc.

o Explicit multi-channel support

• Can also use wildcards

and filters

o User-defined structures are

popular with some

developers !

o Names tend to be

• camel case

• e.g. “PropertyOne”

jddd Applications

acopbeans Applications

DOOCS/TINE Merger
• In the field:

o FLASH

• DOOCS culture with notable TINE servers (e.g. magnets)

o PETRA

• TINE culture with notable DOOCS servers (e.g. vacuum)

o REGAE

• Many native DOOCS and TINE servers all speaking TINE

• Many jddd panels and acopbeans rich clients.

• Many MatLab applications

• Generally smooth operations for the past half-year.

o XFEL

• To be: DOOCS centric with DOOCS and TINE servers all speaking TINE

o Currently gaining experience via REGAE

• Similar mix of jddd, rich clients, MatLab as in REGAE (?)

• Heavy use of DOOCS DAQ

• We’ll see how it goes …

DOOCS/TINE Merger
• Status

o response-request translation ~98 % complete

o services mapping : ~80 % complete

o culture shock:

• Although most all ‘features’ are mapped, those in one ‘world’ often

remain unknown and unused the other ‘world’.

• Can sometimes battle different ‘mindsets’ with contract coercion.

o can trap synchronous polling of individual channels, etc.

• There are still sometimes ‘gateways’ that are created for no other

purpose than to bridge cultural differences.

o Components still carry a ‘brand name’ (and probably always will)

o Strive for a non-zero sum game (WIN-WIN!)

http://doocs.desy.de
http://tine.desy.de

http://doocs.desy.de/
http://tine.desy.de/

