
Servers for Dummies

Using the ‘Buffered Server’

Buffered Server

 Easiest way to write a server

 Directly in C/C++

 LabView

 MatLab

 Python

 As yet no ‘buffered server’ in Java or .NET

 Sorry: you’ll have to use the ‘full server API’

Buffered Server : C/C++

Buffered Server : Labview

Buffered Server : MatLab

Buffered Server : Python

Getting Started

 Windows:
 Get VS 2015 community edition for free

 S:\services\Software\Visual Studio\Visual Studio
2015\Community-U3\
 => vs_community.exe

 Install the tine windows package
 http://tine.desy.de -> downloads -> Windows Setup Installer ->

Daily Build

 http://adweb.desy.de/mcs/tine/TineArchive/setup.exe
 Install windows

 Install development libraries

 Install java (so we can use the Java instant client)

 Install Python

 Make life comfortable with templates …
 BufferedServer template (for development in C in Visual Studio)

 In a ‘cmd’ box prompt:

subst L: C:\tine

subst Z: S:\services\ControlSystem\xApps\controls

http://tine.desy.de/
http://adweb.desy.de/mcs/tine/TineArchive/setup.exe

Buffered Server in C:
Choose a new Visual C++ project and select

the BufferedServer

Buffered Server in C:
Double click on the ‘mysrv.c’ module :

Buffered Server in Python

 Make sure PyTine.pyd is in the DLLs

directory:

Buffered Server in Python

 Either open an Anaconda prompt or a

command shell and type ‘python’:

Linux

 Get the tar ball from

http://adweb.desy.de/mcs/tine/TineArc

hive/tineLinux.tar.gz

 Python: run the tine/python/setup.py after

making sure that anaconda is installed

 C : make use of the

tine/server/BufferedServer/mysrv.mak

make file.

http://adweb.desy.de/mcs/tine/TineArchive/tineLinux.tar.gz
http://adweb.desy.de/mcs/tine/TineArchive/tineLinux.tar.gz

Servers for Dummies

 Have a look at some other servers with
the instant client (e.g.):

 /XFEL/LLRF.CONTROLLER or any doocs
server (device query precedence)

 /XFEL/RadMonIp (property query
precedence)

 any CDI server (property query precedence)

 ARCHIVER (property query precedence)

 VAC.ION_PUMP (no precedence)

Servers for Dummies

 Multi-Channel Arrays
 /TEST/SineServer/<device> Amplitude

 Scheduled Properties
 /TEST/SineServer/<device>

 Sine vs. Sine.SCHED

 Attributes
 Read-only/Read-Write

 Commands
 With/without input

 Read with input
 e.g. Archive calls

 e.g. Unit Server Echo

 Structures/Arrays

Servers for Dummies

 Our first server

 A server belongs to a running process

called a ‘Front-End Controller’ (FEC)

 A FEC can (but usually doesn’t) contain

more than 1 server

 e.g. CAS, many VxWorks servers, several

Magnet servers, etc. share a FEC with other

servers.

Servers for Dummies

Servers for Dummies

 We’re going to use the buffered server
API. Are there any disadvantages?

 Can only have 1 server per FEC.

 Cannot overload properties.

 Cannot have ‘READ with input’
 Input is coupled to WRITE access !

 Some aspects of property handling are not
available (but nothing serious).
 The registered property information is taken

literally!

Servers for Dummies

 Names

 A FEC must have a system-wide unique

name (16-characters)

 This name is usually not visible to anyone

 A host can have many FECs, but each must

have a unique address (IP address + port)

 The default doocs strategy: first 2 letters of

server name + IPv4 address in Hex + RPC port

 Funny names like “Bec0a8a381.52c” (good that no

one sees this!)

Servers for Dummies

 The combination of server name and context
must be unique !
 Can’t have two servers claiming to be

/PETRA/ARCHIVER

 The exported server name and context are
referenced internally at the process level via a
‘local equipment module name’ (6 characters).
 No one sees this either.

 Must be locally unique

 Buffered server: 1 server per FEC =>
automatically locally unique !

Part of the name space !

Servers for Dummies

 You can register names via API in

code:

Servers for Dummies

 Python as well …

Servers for Dummies

 But let’s make life easy with

configuration files !

 Two ways to go …

 fec.xml contains all configuration

information for a FEC in a single file

 fecid.csv + associated .csv Files contain

the configuration information

 Suggestion: go with the .csv Files …

fec.xml

.csv Files

fecid.csv

exports.csv

devices.csv

fecid.csv

Unique Name ! So add your station

number to the FEC_NAME :

BUFSINEFEC1, BUFSINEFEC2, etc.

exports.csv

CONTEXT, EXPORT_NAME, LOCAL_NAME, PROPERTY, PROPERTY_SIZE,

PROPERTY_INSIZE, ACCESS, FORMAT, NUM_DEVICES, DESCRIPTION,

MAX_VALUE, MIN_VALUE, UNITS, XUNITS

TEST, BufSineServer, SINEQM, Sine,1024, 0, READ, float.SPECTRUM, 10,

Sine curve, 1000, -1000, V, sec

TEST, BufSineServer, SINEQM, Amplitude, 10, 1, READ|WRITE,

float.CHANNEL, 10, Sine Curve Amplitude,1000, 0, V,

Unique Server Name ! So add your station number

to the EXPORT_NAME:

BUFSineServer1, BUFSineServer2, etc.

devices.csv

Plug-and-Play

 Automatic registration in tine ENS

 Subsystems

 Not part of name-space

 Useful for browsing

 Decorated contexts will strip off the

subsystem

 e.g. context = PETRA.VAC -> context = PETRA +

subsystem = VAC

 Allowed decorations: .TEST, .SIM, .EXT

Stock and Meta Properties

 All server support a set of ‘Stock’

properties

 e.g. “PROPERTIES”, “DEVICES”, etc.

 All registered properties support a set

of ‘meta’ properties

 e.g. P.HIST, P.EGU, P.NAM, P.MAX

Exercises

 Local histories
 ‘HIST’ flag

 Or make use of history.csv

 Save/Restore
 ‘SAVERESTORE’ flag

 Scheduling
 Pass non-zero value in ‘scheduled’ argument in push_data

 Coercion
 Forcing multicast : ‘NETWORK’

 Forcing data-length/data format : ‘FORCEOUTPUT’

 Forcing polling intervals
 API: SetMinimumAllowedPollingInterval(value)

 Or environment variable: FEC_POLLRATE

 Flagging as static : ‘STATIC’

