Servers for Dummies

Using the ‘Buffered Server’

[Buffered Server

Easiest way to write a server
o Directly in C/C++

o LabView
o MatLab
o Python

o As yet no ‘buffered server’ in Java or .NET
Sorry: you'll have to use the ‘full server API

Buffered Server : C/C++

hittp:/facweb desy.defmesftineftbufsn_Bh.html PR H < ‘

File Edit Wiew Faworites Tools Help

| Features | Central Services | csv-Files | Types | Transfer | Access | API-C | API-VB/ActiveX | API-Java | Examples | Downloads

Functions

Buffered Server API

TINE buffered server documentation. More...

#include "tine.h"
#include "listener.h"
Functions
int AttachServer (char *srvExportMame, char *srvEQPName, int ndevices)
Attaches the TINE server according to the input given.
int AttachServerEx (char *srvExportName, char *srvEQPName, int ndevices, void(*tmr)(void), int tmrInterval)
Attaches the TINE server according to the input given.
int GetInputDeviceNumber (void)
Returns the device number associated with the WRITE call.
int getNotifiedProperty (char *prpName)
Retrieves the property which caused the notifier to be called.
int getNotifiedPropertyAndDevice (char *prpName, char *devName)
Retrieves the property which caused the notifier to be called.
int hasInputChanged (char *prpName)
Checks whether there are new input data for the given property.
int pullBufferedData (char *prpName, char *devName, BYTE *prpData, long prpSiz)
Retrieves the contents of the input data buffer associated with the given property.
int pushBufferedData (char *prpMame, char *devMame, BYTE *prpData, long prpSiz, int prpSchedule)
Refreshes the contents of the data buffer associated with the given property.
int RegisterBufferedDeviceName (char *devName, int devNr, char *devRdr, char *devDesc)
Registers a device with the current device server.
int RegisterBufferedDeviceNameEx (char *devName, int devNr, int devMask, float zPos, char *devRdr, char *devDesc, char *devLocation)
Registers a device with the current device server. (extended call).
int RegisterBufferedProperty (char *prpName, long prpInSiz, short prpInFmt, long prpOutSiz, short prpOutFmt, float prpMax, float prpMin, char *prpEgu, short access, char *prpDsc)
Registers a property with the current device server.
int RegisterBufferedPropertyEx (char *prpName, long prpInSiz, short prpInFmt, long prpOutSiz, short prpOutFmt, float prpMax, float prpMin, char *prpEgu, short access, char *prpDsc, int
prpld)
Registers a property with the current device server. (extended call).
int RegisterBufferedPropertyEx2 (char *prpName, long prpInSiz, short prpInFmt, char *prpInTag, long prpOutSiz, short prpOutFmt, char *prpOutTag, float prpMax, float prpMin, char
*prpEgu, short access, char *prpDsc, int prpld, int arrayType, int rowLength)
Registers a property with the current device server. (doubly extended call).
int RegisterServerCallback (char *prpName, int(*cb)(void))
Registers a callback routine to be called when a WRITE access property is called.
int RegisterServerNotifier (char *prpName, void(*nf)(int))
Registers a Notifier routine to be called when a WRITE access property is called.
int RegisterServerNotifierEx (char *prpName, void(*nf)(int), int nid)
Registers a Notifier routine to be called when a WRITE access property is called (extended call).
int SetBufferedDataSize (char *prpName, int dataSiz)
Establishes the maximum returned array length for the target property.

Detailed Description

TINE buffered server documentation.

< >

Buffered Server : Labview

br]@m B[Bm Bm] G

i http:/faduweb, desy.defmes/tinestinel abyiewaPLhtm PL~-c || 4 | S e |@P| S i,

File Edit View Favorites Tools Help
| Features | Central Services | csv-Files | Types | Transfer | Access | API-C | API-VB/ActiveX | API-Java | Examples | Downloads ~

Simple LabView API for Windows

LabView allows the incerporation of the C or VisualBasic APIs (including ActiveX controls) in its application development environment. However, these can in general be quite unwieldly to use. To
this end, we provide several simple LabView VIs which are based on the TINE BufferServer API and which provide an easy-to-understand quick entry into the world of client/server development

from the LabView perspective.

Servers

It is strongly suggested that server information be registered via the local database files fecid.csv, exports.csv, and <EQM=-devices.csv. These files are all described in detail in the section on csv
Files. Suffice it to say that registering server names, property names and information, and device names via API calls in LabView is rather cumbersome (although possible).

IvTineSrvInit

In LabView it is only neccessary to "attach’ the server to the registered information from the database files. This should be done once in the principal server vi. The pri al server vi
be the only vi you need to deal with if you have a ‘read-only’ server. In any event this 'principal’ vi will service all read requests. IvTineSrvInit should be called once at initialization (for instance in a
sequence structure), passing only the desired 'Export Name' of the server, which is used to cross-check the information in the local database files.

B IvTineSrvinit.vi Front Panel EE®E
Ele Edit Operate Tooks Browse Window Help p
[nn] [13pt Appication Font |~ ['ﬂm
&
Exportiiame: I Init. Ret, Code
- LAZS:

:! BUFSIME a0

Input: Exporthlams is the Device Server's Export Nams as
ertered inexports.csy'

Output: Ret, Code is the initialization return code
{'0' For success).

Parameters:
ExportName (String) is the Export Name of the device server. This must match an entry in the exports.csv file.

Returns:
0 if successful otherwise a TINE error code.

Example:

IvTineSrvInit.vi takes only one String input parameter, namely the Export Name of the device server to be managed by the underlying subsystem.

Exportilame] ik, Ret. Code

Y
T

Buffered Server : MatLab

hittpi/fadweb.desy.de/mcs/tineftinebatLabAPLhtrm #hL ServerAPL

File Edit View Favorites Tools Help
Server APT

You are always at liberty to invoke the MatLab engine routines within a standard TINE server to access functions written in MatLab from a standard server. This approach has its merits but also
requires you to know your way around in 2 programming languages, namely MatLab AND either C or java.

In many cases this is an unnecessary and unwarranted complication. You can also write a TINE server completely in MatLab by making use of the following MatLab functions described below. Once
again, these routines follow in the most part the paradigm of the Buffered Server.

tine_attach_server

If the server's properties and devices are available via a TINE database (produced, for instance, by using the TINE server wizard), then a simple call to “tine_attach_server’ will cause the
configuration database to be read and make the configured properties and devices avialable. The server will automatically "plug’ itself into the control system and be visable to prospective clients. At
this stage there will likely be NO intersting data to be read from any of the properties, as the underlying buffers will have been initialized to contain '0".

Parameters:
egquipment_maodule_name is the so-called 'local name’ of the equipment module. This is a 6-character name used for administration purposes within the running process and is thus
required only to be unigue within the process. In MatLab, you will likely have only a single registered server per MatLab process, so this minimal restriction
scarely presents a problem. Although a meaningless character string such as "1" will suffice, it is typical to provide a 2-letter acronym followed by "EQM" (for
equipment madule), for instance "MLBEQM".

export_name is the equipment module's exported name. This is the server name which all control system clients will "see’. This can be up to 32-characters in length. This
name must be unigue within the registered context (as given in the fecid.csv file or fec.xml file).
device_capacity is the maximum number of device instances that this server will manage.

Alternatively you can completely forgo any configuration database and register all necessary information via the registration API calls 'tine_register_fec', 'tine_register_server',
'tine_register_device', and 'tine_register_property’ (see below).

tine_pushdata

In order to supply the registered properties with data, the MatLab "server’ should call 'tine_pushdata’ when it has determined that new data are available for the property in question. Using just
'tine_attach_server' and 'tine_pushdata’ in this manner are theoretically the only MatLab calls necessary to provide a 'READ-ONLY' server.

Parameters:
property is the property for which the supplied data are to be used.
device is the specific device instance for which the supplied data are to be used. This must be a string corresponding to a registered device or a string of the form "#1", etc. which
then indicates the device instance 'numerically’.
data is the data (array) which is to be 'pushed’ into the underlying property buffer.
size {optional) is the length of the data array to push into the property buffer. If omitted, the entire contents of the data array will be used.

isScheduled (optional) is an integer flag which if nen-zero instructs the subsystem to immediately notify all listening clients of a change in the property’s data.

If the server is to respond to WRITE commands, it should provide a property dispatch handler by making use of 'tine_attach_handler'.

Note that if the data to be pushed is a structure, this must correspond to a registered structure AND the property in question must be registered to support this structure. See the discussion below
concerning registering a structure and registering a property.

tine_attach_handler

If a property is to accept WRITE requests, that is reguests which attempt to change a setting, then the Matlab server should provide a dispatch handler for the corresponding property. This is done
by make a call to 'tine_attach_handler’ and providing the appropriate MatLab function to act as the dispatcher.

Parameters:
property is the property to which the handler is to be associated.
handler_name is the name of a MatLab ".m' function to be called when a WRITE transaction for the property is being requested by some client. This ".m' function must return a status {an
integer value, where '0' means 'success’), and it must have the prototype <dispatch={'property’,'device’,data), where 'property’ and 'device’ will be set to the values in the
call and 'data’ will contain the contents of the set values. If no data have been sent, then this will be a null value. It is up to the dispatch routine to check the data type of
this parameter and to either accept the call (return "0") or to reject the setting on some other grounds (return non-zero : see the section on TINE error codes).

tine_dispatch

In some unsual circumstances, the provided MatLab dispatch handler might throw an exception or otherwise be unable to complete normally. This will effectively block any WRITE access to the v

rarracnnndinn nranarty indafinitali funtil tha nracace ic ractartadl Tn ardar tn fraa tha nranarty WRTTE dienatrh handlar anain o call 6 tina dienatrh fan he mada

Buffered Server : Python

(-5 el

!
| UL a8 22

a

hittpeffachweb. desy. defrmcs/tine ftine PythonAPL bt #Py Serse rAPT p~-a

-

i B |@ P| = tl.‘.| >R

@M.‘|BR.‘.|QM..‘QM |

File Edit “iew Faworites Tools Help
Server APL

Python is in many cases a very good language in which to write middle layer logic, where data is acquired from one or more front-end servers, manipulated, and then some resulting data should be
made available to the control system "at large' for purposes of display or archiving, etc.

You can write a TINE server completely in Python by making use of the following PyTine functions described below. Once again, these routines follow in the most part the paradigm of the Buffered
Server.

PyTine.attach_server

If the server's properties and devices are available via a TINE database (produced, for instance, by using the TINE server wizard), then a simple call to ‘PyTine.attach_sarver()’ will cause the
configuration database to be read and make the configured properties and devices avialable. The server will automatically ‘plug’ itself into the control system and be visable to prospective clients. At
this stage there will likely be NO intersting data to be read from any of the properties, as the underlying buffers will have been initialized to contain '0". A call to "PyTine.attach_server()’ without any
arguments at all will look only for a ‘fec.xml’ file, where it will expect to find all information necessary to register the fec process along with any servers and their properties, devices, and associated
information.

Parameters:
egm (string) is the so-called 'local name' of the equipment module. This is a §-character name used for administration purposes within the running process and is thus required only to
be unique within the process. In Python, you will likely have only a single registered server per Python process, so this minimal restriction scarely presents a problem. Although a
meaningless character string such as "1" will suffice, it is typical to provide a 3-letter acronym followed by "EQM" (for equipment module), for instance "MLBEQM".
server (string) is the equipment module's exported name. This is the server name which all control system clients will 'see’. This can be up to 32-characters in length. This name must be
unigue within the registered context (as given in the fecid.csv file or fec.xml file).
capacity (int) is the maximum number of device instances that this server will manage.

Returns:
0 upon success, otherwise a TINE error code

Alternatively you can completely forgo any configuration database and register all necessary information via the registration API calls 'PyTine.register_fec’, 'PyTine.register_server’,
'PyTine.register_device', and 'PyTine.register_property' {see below).

PyTine.pushdata

In order to supply the registered properties with data, the Python “server’ should call 'PyTine.pushdata’ when it has determined that new data are available for the property in question. Using just
'PyTine.attach_server' and 'PyTine.pushdata’ in this manner are theoretically the only Python calls necessary to provide a "READ-ONLY' server,

Parameters:
property (string) is the property for which the supplied data are to be used.
device (string) is the specific device instance for which the supplied data are to be used. This must be a string corresponding to a registered device or a string of the form "#1",

etc. which then indicates the device instance ‘'numerically’.

devicenumber (int) is the specific device instance according to its numerical form only. This is frequently a better option for a server, which may not know (or need to know) which device
‘names’ have been configured. If both device and devicenumber are provided, devicenumber will take precedence.

data (object) is the data (array) which is to be 'pushed’ into the underlying property buffer.

size (int) is the length of the data array to push into the property buffer. If omitted, the entire contents of the data array will be used.

scheduied (int) is an integer flag which if non-zero instructs the subsystem to immediately notify all listening clients of a change in the property’s data.

timestamp (int) is an explicit (utc) timestamp with which to ‘tag’ the data. Normally, the time of the call to 'PyTine.pushdata’ is used as the data timestamp.

Returns:
0 upon success, otherwise a TINE error code

If the server is to respond to WRITE commands, it should provide a property dispatch handler by making use of 'PyTine.attach_handler’.

MNote that if the data to be pushed is a structure, this must correspond to a registered structure AND the property in question must be registered to support this structure. See the discussion below
concerning registering a structure and registering a property.

PyTine.attach_handler

If a property is to accept WRITE requests, that is requests which attempt to change a setting, then the Python server should provide a dispatch handler for the corresponding property. This is done
by make a call to 'PyTine.attach_handler’ and providing the appropriate Python function to act as the dispatcher.

Parameters:

Getting Started

= Windows:

o Get VS 2015 community edition for free

= S:\services\Software\Visual Studio\Visual Studio
2015\Community-U3\

O =>vs_community.exe
o Install the tine windows package
m htip://tine.desy.de -> downloads -> Windows Setup Installer ->
Daily Build
m http://adweb.desy.de/mcs/tine/TineArchive/setup.exe
o Install windows
O Install development libraries

O Install java (so we can use the Java instant client)
O Install Python

o Make life comfortable with templates ...
= BufferedServer template (for development in C in Visual Studio)

In a ‘cmd’ box prompt:
subst L: C:\tine
subst Z: S:\services\ControlSystem\xApps\controls

http://tine.desy.de/
http://adweb.desy.de/mcs/tine/TineArchive/setup.exe

Buffered Server in C;:

Choose a new Visual C++ project and select
the BufferedServer

Mews Project @

b Recent MET Framewark 452 =~ Sortby: Default - Search Installed Templates (Ctrl+E) P~
4 Installed ++ - .
! - Type: Visual C++
N k I Empty Project Wisual C++
4 Termplates Basic buffered server main module
i 4
b Misual C# I | Directx 11 and X8ML Spp (Universal Windows) Wisual C++
) . <a>
I Wisual Basic
) ++
Wisual F# | I Unit Test App (Universal Windows) Wisual C++
: <@y
4 Misual C++
) 44
b Windows ﬂ!! DLL {Universal Windowes) Wisual C++
a3
ATL
4
CLR EE I Static Library (Universal Windows) Wisual C++
General
MFC Windoes Runtirme Cormponent (Universal Windows) Wisual C++
Test
Win32 Install Windowes XP support for C++ Wisual C++
Craoss Platform
Extensibility hakefile Project Wisual C++
S0L Server

Python
B JavaScript

B TypeScript

Gare Serverdpplication Wisual C++ -
e -
b Online Click here to go online and find ternplates.
Hame: BufferedServer?
Location: Yawin,desy.dethomehduvalimy docurmentshwisual studio 20154Projects -
Solution: Create new solution -
Solution narne: [] Create directory far salution

[] Add to source contral

OK | [Cancel

Buffered Server in C;:

Double click on the ‘mysrv.c’ module :

unch (Ctrl+C) P B x
File Edit Wiew Project Build Debug Team Tools Test Spalyze Window Help Sign in B
S0 @ W - o Debug - e = b Local Windows Debugger ~ | 57 _ | | =
Solution Explorer > 4 x
Search Toolbox P - | Ml BufferedSenerl - (Global Scope) = @ updatefvoid) - @ ‘ oS a ®| <
S#inc i =
4 General 1 "}n'll e fS‘fdlo'rP Tl Search Solution Explarer (Ctrl+) P~
2 #include “"tine.h - -
There are no usable contrals in 3 #include "tbufsrv.h®] Solution ‘BufferedServerl (1 project)
this group. Orag an item onto 4 4 %] BufferedServerl
this text to add it to the toolbox, 5 Svoid update(void) b =W References .
=1 b 5 External Dependencies
6 i 47 Header Files
7 } ! Resource Files
8 4 .| Source Files
9 —lint main(int argc, char *argv[]) b
18 i
11 // attach to underlying database (instead of hard-coded initialization)
12 AttachServerEx(NULL, NULL, @, update, 50@);
13 // we want to see the console prompt
14 SetInterpretConsoleCommands (TRUE);
15 // launch the cycler thread ...
16 SystemWaitCycleTimer();
17 return @;
138 1
19 Solution Explo... SRR AN
-~ 0 x
mysrv.c File Properties -
=0 &
B Misc
(Mame) My P
Content False
File Type CfC++ Code
Full Path Wi desy.dethomel duw
Included In Proj True
Relative Path rryseac
-
115% - 4 3
> o x
Shows autput frami | Debug - & | & | =
The thread @x32d@ has exited with code @ (@xe). -
The thread @x4318 has exited with code @ (@x8).
The thread @x2dd8 has exited with code @ (@x8).
The thread @x5a78 has exited with code @ (@x8).
The thread @xcf@ has exited with code 8 (8x@).
The program '[22316] BufferedServerl.exe' has exited with code @ (8x@).
+ fil (Name)
4 » Mames the file object,

Ln g

Buffered Server in Python

Make sure PyTine.pyd is in the DLLs
directory:

(o] o)
@n\:jvl v Cormputer » {C) Local Disk » Users » duval » AppData » Local » Continuurm » Anacondad » DLLs - |&? || Seqrch OlLs o
Organize « Include in library + Share with « Mew folder = v [
4 Anacondal - Marme Date mod‘ified Type Size it
conda-meta
[PyTine.pyd 4/26/2017 515 P PYD File £0 KB
bLLs || _decimal.pyd 2/25/2015 6idd AM PYD File 237 KB
boc L _bzdpyd 2/25/2015 644 Ahd P%D File 62 KB =
B (] _ctypes pyd 2/25/2015 44 5M BYD File 106 KB
anmples || _elementtree, pyd 2/25/2015 644 2k PYD File 164 KB
include (] _hashlib.pyd /25/2015 44 8M PYD File 1173 KB
lr?fo || _overlapped.pyd 2/25/2015 644 2k PYD File 25 KB
Lfb | _sslpyd 2/25/2015 fidd b PYD File 1,698 KB
I_.lbrar},-' | pyexpatpyd 2/25/2015 644 2k PYD File 164 KB
libs [selectpyd 2/25/2015 44 8M PYD File 11KE
licenses || winsound.pyd 2/25/2015 644 2k PYD File 10 KE
Menu [_ctypes_test.pyd 2/25/2015 644 8M PYD File 15 KB
node-webkit L lzrmapyd 2/25/2015 644 Ahd P%D File 133 KB
pkgs i et A DCNAE S A4 Ak nwh Cil- F2I°D i

28 items

Buffered Server in Python

Either open an Anaconda prompt or a

command shell and type ‘python’:

EM Anaconda - python

ntinuumsAnacaon
ntinuumyanacon

(64-bity| (default,
‘credits™ or "license™

Continuumiyanaconda

faor

6 2815, 12'95:1131}
more information.

[MSC w.1688 64 bit (AMDE4)] on win3z

L |

m Get the tar ball from
http://adweb.desy.de/mcs/tine/TineArc

hive/tineLinux.tar.qz

o Python: run the tine/python/setup.py after
making sure that anaconda is installed

o C : make use of the
tine/server/BufferedServer/mysrv.mak

make file.

http://adweb.desy.de/mcs/tine/TineArchive/tineLinux.tar.gz
http://adweb.desy.de/mcs/tine/TineArchive/tineLinux.tar.gz

[Servers for Dummies

Have a look at some other servers with
the instant client (e.g.):

o [/XFEL/LLRF.CONTROLLER or any doocs
server (device query precedence)

o [/XFEL/RadMonlp (property query
precedence)

o any CDI server (property query precedence)
o ARCHIVER (property query precedence)
o VAC.ION_PUMP (no precedence)

Servers for Dummies

Multi-Channel Arrays
o [TEST/SineServer/<device> Amplitude
Scheduled Properties

o [TEST/SineServer/<device>
Sine vs. Sine.SCHED

Attributes

o Read-only/Read-Write
Commands

o With/without input
Read with input

o e.g. Archive calls

o e.g. Unit Server Echo
Structures/Arrays

[Servers for Dummies

Our first server

o A server belongs to a running process
called a ‘Front-End Controller’ (FEC)

o A FEC can (but usually doesn’t) contain
more than 1 server

e.g. CAS, many VxWorks servers, several

Magnet servers, etc. share a FEC with other
servers.

Servers for Dummies

Server and FEC Rernote Control Panel for LINAC2 EI@
File Wiew Mavigate Tools Help
CHT-VEW L2GEunScreen PLAZYE-YWEw RFMultipleser # | Selected FEC LTG-5RY1 FEs on this host:
ComBobLZPia LZIMon PIAZYKHIST RFPhaseCahinet Selected Server [Local Mame - on FEC] LTE-Wew [LTE] LTE-SRY1 (LINACZ)
CYCLER L2IPEG. Analogue FiConditions RFSedacianagment Subsystem TIM
DIDG-Wiahid LZKICKER. CDI FiControls SchirmMonLz ‘ersion 4.05.0009
DDGDEL-VEW L2LewProsxy PikevBoxes Schirmonfu, C0T 05 VEWORKS
DEL-YRW LZPiloProy Filatherme_L2 SEQIEMCER. Address 131,169,128, 154
DESYDATA L2RefTiming FiPrivateCommands SLED_DLY-YI Port Offset i)
ER1TRIM,CDI L2Temp PiPtivateSwitchables STATE Host Computer mskltgppcl . desy. de
EVEMTAPC LZTempopr PiPriviCmds_piFieldLin. .. StrahlBedarf Responsible Hurdelbrink mkibri Brede
EYEMTS LETRCr PiPriviCond_piCentDeliP Strom.DiC-PIA Descripkion LinacZ Triggergenerator
EVEMTSTORE LZTRIM.CDT PiPrivCond_piFieldLin,.. TEMSEMSORS,CDI Laocation bldg 24 rm 100 RS (1)
Fan LayAaC.CDl FiPriviCtrls_piCentDeliP TriggerModule_LZ2 Importance CRITICAL
Fan. Autornatic LvwdwProsy PiPrivSwkch_piFieldLi... UmschaltManager Server App, Version 1.00.0000
Fan.Counter LINACELOBALS PivideoSwich_piField... YAC.GPU Servers on FEC LTG-SRY¥1 -
Fan Hardware LINACSTATE REGAEZYKHIST WAC.ION_PUMP CHOPRAW-Y4 [RAWDEL] ~ | Repot || amachrec || wnicviewer |
Fan. Criginatar LTia-Yih! ResetTrigger. CDT WACSY CHOPPER-YXW [CHOPP] | Ping | | Cortrol | | Restart |
Fan.Remaote LTGEL-WEW RF.Atkenuakor, 0T WAC.TPG DDG-Yw [DDG]
Fan.State LTGDEL-YW RF Beam, CDI ZAKUNT-Yiw DDGEDEL-Y [DDGDEL] 'gost colmllr_'uten alive
Fan.Yeto LTGPH-Yw RF.Gunz. 0T ZzDoors Chopper Timing [AMTE] Dea:evr:;;ﬂ‘:a;iie {wwarks restart daeman)
FECSTATS Mag. Carr RF.Modulator, CDT LTGPH-YxW [PHASE]
GLOBALS Mag. Corr-Inj RF.Multiplexer, CDT » LTGEU-Y:W [BUCKET]
Refresh | [Pingal Active: 177 of 178 (21:04:16) P LTGDEL-Y:i [DELAY]
LTG-¥wd: Ackive (21:04:21) _TER || | LTE-vRw [LTG] v
Summary: Serversin LINACZ
Selected Subsystems Activity | Contracts | Clients | Alarms | Log Files || Stats | Histories | Commands | Settings | IC
FEC Activity
FEC LTG-5RY1
DIAG HIST U INSTR, Lacal Time Thu Oct 19 21:04:45
Skart Tirne Tue Mar 14 10:26:01
Sys Poll Rate 20
MAG MEX MISC FINTLK Nr By Tasks 0
Mr Tokal Contracts 43
Mr Tokal Clients 39
Mr UDP Packets Received 114747966
RF SER TIM YAC Mr TCP Packets Received 0
|5erver Activity
Server LTia-xh
LINACZ/LTE-V¥W contracks &
HHEED) [ITest LINACZ(LTG-W dlients 10
FEC As Client
|T”W Mr Connections 12
— Mr Connection Timeouts 1
FEC Importance 05 Color Code - Nr Connection Arrivals 26
ALL w Dos Unix YxWworks YIS Winl6 Win32 Java M"
21:04:20: Mormal

[Servers for Dummies

We're going to use the buffered server
API. Are there any disadvantages®?

O
O
O

Can only have 1 server per FEC.
Cannot overload properties.
Cannot have ‘READ with input’

Input is coupled to WRITE access'!
Some aspects of property handling are not
available (but nothing serious).

The registered property information is taken
literally!

Servers for Dummies

Names

o A FEC must have a system-wide unique
name (16-characters)
This name is usually not visible to anyone

o A host can have many FECs, but each must
have a unique address (IP address + port)

The default doocs strategy: first 2 letters of
server name + |IPv4 address in Hex + RPC port

O Funny names like “Bec0a8a381.52¢” (good that no
one sees this!)

Servers for Dummies

Part of the name space !

The combir]ation of server name and context
must be unique !

o Can’t have two servers claiming to be
/PETRA/ARCHIVER

The exported server name and context are
referenced internally at the process level via a
‘local equipment module name’ (6 characters).

o No one sees this either.
o Must be locally unique

Buffered server: 1 server per FEC =>
automatically locally unique !

ervers for Dummies

Y . t . l \ I I .
" e - httpi/fadweb.desy.de/mesrting/srvdbase_Behtmi¥3chiTa2eck T 2aad10F 73505664281 O~ € || 0| S ¢ |@p_. ‘ £ ‘ PR EM |n B ‘QM ‘ G ‘ |
™ File Edit View Favorites Tools Help

// ete., etc.
] cooc ~
i

References feclog(), and feclogEx().

Referenced by RegisterFecNameEx().

int RegisterFecName (char * name,
char * desc,
char * os,
char * loc,
char * hdw,

char * resp,
UINT16 poff

Assigns a FEC Name to the server process,

Servers must be assigned to a Front End Computer (FEC), which for many operating systems corresponds to a process running on the computer rather than the computer itself (meaning there
can in some cases be more than ene servers with different 'FEC’ names running on the same computer. There can be several device servers attached to the same FEC (i.e. sharing the same
address space), so the FEC name is a distinct quantity from the device server name (see RegisterExport()), and this name must also be system-wide unique.

The FEC name can also be (and frequently is) registered via the presence of an ‘fecid.csv' startup database file.

Parameters:

name is the FEC name indentifying the Front End Computer and to which all registered equipment modules are bound.

dsc is a 64-character desciption of the FECs server duties. A "subsystem’ can be associated with ALL eguipment modules found on the FEC by prefixing the description with a
subsystem tag of the form "[<tag=>]". This information will be parsed by the Equipment name server and used for sub-system specific gueries. For example, the associate the FEC
"HEPHF" with the subsystem "RF", the description field might be "[RF]Hera Proton HF Control”.

os s included for backward compatibility. Histericall it defined the FEC's Operating System. This information is now deduced automatically from the library build.

loc s a 32-character string giving the phyical location of the FEC.

hwd is a 32-character brief description of the 10 hardware found on the FEC.

resp is a 32-character string listing the developer(s) responsible for the FEC. Note: The Equipment Name Server will allow the removal of FECs and associated equipment modules to
the user(s) specified here.

poff is the "Port Offset’ to be applied to the FEC. This parameter plays an important role where more that one FEC is to run on a machine running an operating system using virtual
memeory. In such cases 'Frent End Computer' is a misnomer, since "FEC” really refers to a process running on the computer to which one er more eguipment modules are bound.
For operating systems where all processes run in the same address space (such as VxWorks, MS-DOS, Win16, NIOS) there is in fact only one such processes managing all
requistered equipment medules. For systems using virtual memory (such as Linux, Solaris, HP-UX, Win32, etc.), you can have many such processes running independently of one
another. Since each such process must listen on a unique set of server ports, you must see ta it that all such FEC processes are registered with a unique 'Port Offset'.

Returns:
0 if successful, otherwise a TINE completion code which can be interpreted by a call to GetLastLinkError().

Note:
FEC Names can also be registered by including the startup file ‘fecid.csv'. In the file, most of the input parameters appear as (optional) column entries. It is frequently preferable to work
with startup configuation files, since it is frequently desireable to avoid hard-coding names and description parameters.

See also:

F) i FecInformation().

References RegisterFecNameEx().

Servers for Dummies

Pyt

non as well ...

http:Fadhveb,desy.de/mcs i ne/tinePythanaPLhtm Py Se rverPl p-elfd

(¢]

£ ‘ @D, |

File Edit Wiew Favorites Tools Help

how many devices are supprted, etc. etc.

It if then often more advantageous to register all configuration information directly in Python. As the python server uses a ‘one-FEC, one-server’ policy, the information necessary to launch a fully
functioning server on-the-fly is minimal (e.g. an "acceptible’ - in most cases - FEC Name can be generated from the input server name and context, the local equipment module name is simply
taken to be 'PYEQM').

The set of available server configuration routines consist of the following:
PyTine.register_fec

You can assign a FEC name to your Python server via the API call 'PyTine.register_fec'. If you want to register a specific FEC name or provide other specific FEC information you can do so with this
call.

Simply typing ‘PyTine.register_fec()" at the Python prompt will produce the following output:

>»> import PyTine
>
>»> PyTine.register_fec()

t call last):
line 1, in <module>
ine.register fec(name='str'[,subsystem='str',context='str',descripton='str',location="'str', hardware='str',responsible='atr',port=val])

Traceback (most re

The one required argument is the ‘'name’, which provices the system-wide unique FEC Name (see the Overview documentation: "What's in a Name?'). However if all other arguments are omitted,
then the default port offset will be determined by scanning the local FEC manifest in order to avoid a conflict with other servers which are possibly running on the same host. Likewise it is often
useful to provide information as the location, responsibility, ‘context’ (default = "TEST") and 'subsystem’ {default = "TEST"). So making use of all parameters is encouraged.

Parameters:

name (string) is the system wide unique name of the FEC process (up to 16 characters in length)

subsystem (optional string) is the control subsystem to which the servers should be associated. (e.g. "VAC", "DIAG", "MAG", etc.). This is not a part of the name hierarchy but can be
used in browsing.

context (optional string) is the control system context in which the servers should be registered.

description (optional string) is a description (up to 64 characters) of the functionality of the FEC.

location i(optional string) s a string (32 characters) containing the phyisical location of the FEC host computer.

hardware (optional string) is a string description of attached hardware. For most Python middle layers, this will simply be "none”.

responsible (optional string) is the person (or persons) to contact in case of problems. It should also centain the ‘user name’ if possible of such persons, as administrative actions (such as
‘removing’ the FEC from the ENS database) will require a 'match’ on the user name of the person attempting such actions versus thaose ‘responsible’ for the FEC in question.

port (optional int) is the port "offset’ to be applied to all of the server's listening service ports. This should be a simple integer between 0 and 65535, but preferably small. The
default is "0". If multiple FECs run on a single computer, then each must have its own unigue port offset. Hence the default value of '0" will work only once per host. Once again,
this is not the listening 'port address’ but is an ‘offset’ to be applied to a set of listening ports (UDP, TCP, STREAM, Debug, and even possibly IPX).
Returns:

‘0" upon success or a TINE error code.
PyTine.register_server
You can assign the server's exported name and local equipment module name to your Python server via the API call 'PyTine.register_server'.

Simply typing ‘PyTine.register_server()’ at the Python prompt will produce the following output:

>>> 1im
>>>
>»> PyTine.register server()
Traceback (most recent call last):

ort PyTine

File "<stdin>", line 1, in <module>
SyntaxErr register_server(name='str'[,context='str',eqn='str’,capacity=val, fec='str'])
>>>

" >

[Servers for Dummies

But let’'s make life easy with
configuration files !

Two ways to go ...

o fec.xml contains all configuration
information for a FEC in a single file

o fecid.csv + associated .csv Files contain
the configuration information

Suggestion: go with the .csv Files ...

fec.xml

L:f’ Mgroupad miMAATINE_Presentations\ServersForDummiesifecam| - Notepad++ EI @
File Edit Search “iew Encoding Language Settings Tools facro Run Pluging Window 7 X
RS T | B oel il x| BE] EDERE®|E B | %8 =a v = |allddle||h n2f|n3 b |bs e (5] >
= rd-tada st |EJ_Vnrlage-KaltelkarteKnntln\lsyslemplngramme bt |E]|:nns-dntnet bt ‘E]a:nptrammg bt ‘E]sw (=) [=] fec metB|
1 <fxml wersion="1.0" encoding="UTF-§" 2> -
< FEC:
3 <NAMNE-BUFSTHEFEC- /HNAME:-
4 <PDRT_DFFSET)]R}'PDRT_DFFSET)
5 <HISTORY_HOME>. JHISTORY< /HISTORY _HOMES-
6 [<EQm-
7 <NAME-BUFEQM: /LM
& < SERVER-BufSineServer< /SERVER-
] < CONTEXT-TEST< /CONTEXT
10 < SUESTSTEM-TEST< / STE STSTEM:
11 <DEVICE_SPACEX10< DEVICE_SPACE:
12 = <DEVICE>
13 <NAME-SineDevice0< /NAME:
14 <HUMEBER: 0=/ NITMEE R
15 F < /DEVICE:
16 <DEVICE>
17 <NAME-SineDevice 1< /NAME: E
1a <HUMEBER: 1< /HITMEER:
19 F < /DEVICE:
20 <DEVICE>
21 <NAME-SineDevice2< /NAME:
22 <HUMBER:-2< /HITMEER:
23 F < /DEVICE:
24 H <DEVICE>
25 <NAME-SineDevice 3< /NAME:
26 <HUMEBER: 3= /NITMEER:
27 F < /DEVICE:
28 = <DEVICE>
29 <NAME-SineDeviced< /NAME:
3n <HUMBER4< /HITMEER:
31 F < /DEVICE:
33 = <DEVICE>
33 <NAME-SineDevice5< / NAME:
34 <HUMEBER: 5< /NITMBEER:
35 F < /DEVICE:
36 <DEVICE>»
37 <NAME>SineDevice 6/ NAME:
38 <NUMBERZ 6 /NUNEBEFRZ»
39 - </DEVICE=
4an <DEVICE>
4l <NAME>SineDevice 7 /NAME:
42 <NUMBERZ 1< /NUNBEFRZ
43 - </DEVICE=
43 [H <DEVICE>
45 <NAME>SineDevice 8 /NAME:
46 <NUMBERZ §< /NUNBEFR:
47 - </DEVICE=
48 = <DEVICE>
49 <NAME>SineDevice 9 /NAME:
50 <NUMBERZ- 9 /NUNEEFRZ
5L - </DEVICE= -

eXtensible Markup Language file length : 3,376 lines : 80 Ln:d Col:19 Sel:0]0 Windows (CRLF) UTF-8 NS

.csv Files

fecid.csv

FEC_NAHME ,Context,jub3ysten,Port_0ffset,Description,Location,Hardware,Responsible
EUFIINEFEC,TE3T,TEST,1l,3ine Curwve [enerator, Helgoland, None,3chulul

exports.csv

CONTEXT,EXPORT_NAME , LOCAL_NAME, PEOPERTY, PROPERTY_3IZE,PROPERTY_INSIZE,ACCESS, FORMAT ,NUM DEVICES ,DESCRIPTION,MAX VALUE,MIN VALUE,UNITS,XUNIT3
TE3T ,Bufiine3erver 3INEQM, 3ine,1024,0,READ , float. SPECTRIM, 10, 3ine curve,1000,-1000,V,sec
TE5T,Butffinelerwver, 3INEQH, dnplitude, 10, 1, FEAD |WRITE | 3AVERESTORE , £1oat. CHANNEL, 10, %ine Curve Amplitude,l000,0,7,

devices.csv

LEVICE_NUMEER,DEVICE NAME DEVICE DESCRIPTION,PROPERTY LIST,DEVICE LOCATION,DEVICE ZP03
0,5%inelbewvicel,sine curve 1,,,
1,5inelbevicel ,sine curwve 2
2, 5inebevicel sine curwve 3
3,5ineleviceld, sine curve 4
4, 5inelbeviced,sine curwve 5
5, 5inelevicel, sine curve 6,,,
7
g
a
1

6, 5inelbeviceld , sine curve
7,.5inelbevice? ,sine curve
G, 5inelbeviced, sine curwve
9, 5inelbeviced , sine curve

fecid.csv

FEC HNAME,Context,ubiystem,Port Offset, Description,lLocation,Hardware Responsible
EUFARINEFEC , TEST, TEST,l,5ine Curwve [Generator Helgoland,None,3chulul

Unique Name ! So add your station
number to the FEC_NAME :

BUFSINEFEC1, BUFSINEFEC2, etc.

exports.csv

CONTEXT, EXPORT_NAME, LOCAL_NAME, PROPERTY, PROPERTY_SIZE,
PROPERTY_INSIZE, ACCESS, FORMAT, NUM_DEVICES, DESCRIPTION,
MAX_VALUE, MIN_VALUE, UNITS, XUNITS

TEST, BufSineServer, SINEQM, Sine, 1024, 0, READ, float. SPECTRUM, 10,
Sine curve, 1000, -1000, V, sec

TEST, BufSineServer, SINEQM, Amplitude, 10, 1, READ|WRITE,
float. CHANNEL, 10, Sine Curve Amplitude,1000, 0, V,

Unique Server Name ! So add your station number
to the EXPORT_NAME:

BUFSineServer1, BUFSineServer2, etc.

devices.csv

DEVICE NUMEEE.,DEVICE NAME DEVICE DEACEIPTION,PROPERTY LIST,DEVICE LOCATION,DEVICE ZP03
0,53inelewvicel,sine curwve
l,3inelevicel ,3ine curve
2, ,51lneleviceZ, 3ine curwve
3,31ineleviced,2ine curve
4, 531ineleviced,sine curve
S,51inelevicel,2ine curwve
6,3inelevicet,,3ine curve
7,531inelbevice?l,3ine curve
g,51inelbeviced,sine curve 9,,,

IB,SineDevicEE,sinE curve 10, ,,

=
-
-
-

- S
- -
- -

-
-
-

LY
- N
- N

-
-
-

W o0 -] oo e D [
-
-
-

Plug-and-Play

Automatic registration in tine ENS

o Subsystems
Not part of name-space
Useful for browsing

Decorated contexts will strip off the
subsystem

O e.g. context = PETRA.VAC -> context = PETRA +
subsystem = VAC

o Allowed decorations: .TEST, .SIM, .EXT

[Stock and Meta Properties

All server support a set of ‘Stock’
properties

o e.g. 'PROPERTIES”, “DEVICES’, etc.
All registered properties support a set
of ‘'meta’ properties

o e.g. P.HIST, P.EGU, P.NAM, P.MAX

Exercises

Local histories

o ‘HIST flag

o Or make use of history.csv
Save/Restore

o ‘SAVERESTORE' flag

Scheduling
o Pass non-zero value in ‘scheduled’ argument in push_data

Coercion
o Forcing multicast : ‘NETWORK’
o Forcing data-length/data format : ‘FORCEOUTPUT’

o Forcing polling intervals

API: SetMinimumAllowedPollingInterval(value)
Or environment variable: FEC_POLLRATE

o Flagging as static : ‘STATIC’

