
TINE CORE MEETING
26.4.2016

Noteworthy C-Lib Changes

• Bug fix concerning poll() behavior.

• MCA format elevation

• Bug fix on MACOS (from last time)

select() vs. poll()
• Up to August 2015 TINE made use of select().

 int select(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, struct timeval *timeout);

 void FD_CLR(int fd, fd_set *set);

 int FD_ISSET(int fd, fd_set *set);

 void FD_SET(int fd, fd_set *set);

 void FD_ZERO(fd_set *set);

RETURN VALUE

 On success, select() and pselect() return the number of file descriptors contained in the three returned descriptor

sets (that is, the total number of bits that are set in readfds, writefds, exceptfds) which may be zero if the timeout expires

before anything interesting happens. On error, -1 is returned, and errno is set appropriately; the sets and timeout

become undefined, so do not rely on their contents after an error.

ERRORS

 EBADF An invalid file descriptor was given in one of the sets. (Perhaps a

 file descriptor that was already closed, or one on which an error has

 occurred.)

 EINTR A signal was caught; see signal(7).

 EINVAL nfds is negative or the value contained within timeout is invalid.

 ENOMEM unable to allocate memory for internal tables.

select() vs. poll()

put all socket

descriptors in the set

“The mother of all select()s”

– S. Herb

in routine AcceptIP() in srvip.c

just select on

‘read sets’ !

The doocs server with >1024 open files

problem :
• XFEL Magnet Middle Layer Server (L. Froehlich) written

as a doocs server with TINE thread.

• Collects info from all 1200+ Magnet PSCs in XFEL.

• Keeps a doocs history of each one individually.

• doocs histories keep files open!

• Then turns on the TINE thread

• Initial socket descriptor tries to begin at > 1200.

• select() is limited to 1024

• Oops!

Solutions …
• Don’t do it this way (?).

• Switch to the more modern ‘poll()’ call.

• select() is a BSD standard since the 70s and 80s.

• poll() does not exist on all platforms: missing on

e.g.Windows XP and VxWorks

 int poll(struct pollfd *fds, nfds_t nfds, int timeout);

 struct pollfd {

 int fd; /* file descriptor */

 short events; /* requested events */

 short revents; /* returned events */

 };

POLLIN

 There is data to read.

POLLPRI

 There is urgent data to read (e.g., out-of-band data on TCP

 socket; pseudoterminal master in packet mode has seen state

 change in slave).

POLLOUT

 Writing now will not block.

POLLRDHUP (since Linux 2.6.17)

 Stream socket peer closed connection, or shut down writing half

 of connection. The _GNU_SOURCE feature test macro must be

 defined (before including any header files) in order to obtain

 this definition.

POLLERR

 Error condition (output only).

POLLHUP

 Hang up (output only).

RETURN VALUE

 On success, a positive number is returned; this is the

number of structures which have nonzero revents fields (in

other words, those descriptors with events or errors

reported). A value of 0 indicates that the call timed out and

no file descriptors were ready. On error, -1 is returned, and

errno is set appropriately.

ERRORS

 EFAULT The array given as argument was not

contained in the calling program's address space.

 EINTR A signal occurred before any requested event;

see signal(7).

 EINVAL The nfds value exceeds the RLIMIT_NOFILE

value.

 ENOMEM There was no space to allocate file

descriptor tables.

Solution with poll() in August 2015
put all socket

descriptors in the set

“The mother of all poll()s”

just look for

POLLIN !

Can anyone spot the bugs ?

Recent Problems …

• CFEL:

• Using TCP, client disconnects and server consumes 100% for up to

5 minutes.

• EMBL:

• tineRepeater occasionally gets into a mode where it uses 100%

CPU (and stays there until restarted).

• ????

Bugs with poll() since August 2015
put all socket

descriptors in the set

“The mother of all poll()s”

just look for

POLLIN !

Poll() always (!) fills in the exceptions in

.revents and then does NOT return -1 with

EINTR but returns a ready count > 0!

These routines now take an offset !

MCA Format Elevation

• A property can register itself to deliver a ‘multi-channel array’
(MCA).

• e.g. property “Orbit.X” (all BPM positions), “Pressure” (all ion pumps),
“Temperature” (all temperature sensors)

• More efficient to get an array of all 300 monitors than to get
300 individual elements !

• A “proper” MCA property will be able to deliver

• a value for a single requested device, (scalar)

• a set of values for a section, or (array)

• all values for all devices. (array)

• Monitoring a single device will ‘coerce’ the requested contract
into obtaining the entire array and piping the proper array
element into the original request.

• The server sees and handles only a single contract for all devices on
behalf of ALL interested parties.

MCA Format Elevation

• The Issue:

• What if device ‘B’ (e.g. element #15) has a problem (e.g. ‘hardware

error’)?

• Either the whole MCA has a problem (‘hardware error’) or the

whole MCA is ‘okay’ (and the data for element #15 ?).

• Josef’s server wizard takes the first strategy.

• New Approach:

• Format elevation !

• If a property “P” is registered to deliver an MCA of FLOAT values

AND is overloaded to deliver an MCA of FLTINT values (value-

status pairs) then the MCA coercion is allowed to ‘elevate’ a

request for FLOATs to a request for FLTINTs.

• The original request sees the FLOAT value and the INT status.

MACOS Bug Fix (from last time)

• MACOS (FreeBSD) doesn’t like in-situ memcpy()

(overlapping memory areas).

• e.g. Prepare an array of ‘PrpQueryStruct’ items

MACOS Bug Fix (from last time)

• Caller just wants an array of NAME64 items (64-character

fixed length strings).

• Should work just fine if ‘names’ and ‘prpQueryStructs’

point to the same memory area …

• MACOS doesn’t like this …

for (i=0; i<length; i++) memcpy(names[i],prpQueryStructs[i].prpName,64);

