
TINE Services
Background slide 2

Services (Archiving, Alarms, …) slide 19

Instant Client (and other utilities) slide 146

Part I. Background Information

• Control elements are distributed

• Many (disparate) platforms

• Windows, Unix, VxWorks, java, (DOS , VMS, NIOS)

• And Frameworks

• .NET, LabView, MatLab, Python, Perl

• Device Servers and Property Servers

• Servers with device instances, Services, …

• Client Applications

• Native

• Frameworks: (jddd, CSS, COMA)

• RAD tools: ACOP

FECs

• Front End Controller (a process)

• Unique address (IP + port offset)

• Unique name

• Not ‘visible’ to most API routines.

• Platforms with virtual memory (Win32, Win64, Unix, VMS)

• Many FECs per host possible
• Same IP, different port offsets

• Platforms without virtual memory (DOS, Win16, VxWorks)

• One FEC per host

• Each FEC can have many Equipment Modules (EQM)

• ‘Equipment Module’ is what is exported as a ‘Server’
• Has a local name tag (6-characters, not ‘visible’)

• All EQMs share the same address space.

• Most FECs only have 1 EQM.

Servers
• Device Servers

• Instances of hardware
devices

• Hierarchy is flat or device-
oriented

• Each device supports a set
of properties

• The device has properties !

• e.g. BPM, BLM,
VAC.ION_PUMP, …

Servers
• Property Servers

• Services accessed by
properties

• Hierarchy is flat or
property-oriented

• Each property supports a
set of ‘devices’ (i.e.
keywords)

• The server has properties !

• e.g. ARCHIVER, CAS, any
CDI server, …

Servers
• Logical (i.e. ‘group’) Servers

• Distributed among multiple
device servers (members)

• Each ‘member’ device
server has unique set of
devices

• e.g. PiConditions,
Mag.Group, …

Servers
• Failover (software failover)

• Master and Slave share the
same Server Name

• e.g. Idc, BunchStrom_IMA
(DESY2), …

Properties

• Define the ‘action’ part of a request to an equipment module
• Are really ‘Methods’
• Attribute style properties :

• READ/WRITE (i.e. get/set) ‘something’
• Department of Redundancy Department:

No need to register “rdSomething” and “wrSomething”

• Command style properties :
• WRITE command initializes action

• e.g. “RESET”, “INIT”, “START”, “STOP”

• Call style properties :
• READ (or WRITE or WRITE/READ) involves sending input and

receiving output (not necessarily of the same data type)
• e.g. “CorrectOrbit”

• Properties can be overloaded!
• Registered multiple times with different input/output data.

• e.g. return simple or detailed information based on requested output
data type.

Properties

• Need to be registered (along with all meta information) !
• Units, settings, description, etc. +

• Array type !
• Make use of multi-channel arrays where possible !

• MCA is NOT the same as multiple single element acquisition or
wildcard access.

• Can play a BIG roll in data archiving !

• Stock Properties
• All Servers have them!

• Some are FEC specific
• SRVSTARTTIME, SRVCMDLINE, etc.

• Some are EQM specific
• ALARMS, CONTRACTS, etc.

• ACCESSLOCK (quite a useful one!).

Properties

• Have ‘meta’ information !

• Access most information via a property query structure (STRUCT
+ tag = “PRPQSr4”) or

• Individually via meta property decorations:

• .EGU, .XEGU, .MAX, .MIN, .DESC

• Interface meta properties:

• .HIST is the interface to retrieve the local history of the property (if it
is being taken).

• Also: .BIT.x, .MASK.x, .GATE.x

• Apply to integer types only

• Hidden from general browsing !

Properties A property query :

Devices
• Input device name checked at the EQM (property handler) !

• Can signify particular instances of a hardware module

• device server view

• e.g. BPM has devices BPM_SWR_13, BPM_SWR_31, etc.

Devices
• Can signify particular readout elements

• e.g. BunchScope has devices Bunch-1, Bunch-2, etc.

Devices
• Can signify different

readout categories

• e.g. ELWISes have devices
“Absorber”, “Cavity”,
“Interlock”, etc.

• e.g. Video has devices
“Server”, “Source”,
“Output”, “Adjustments”,
etc.

Devices
• Can signify property

related ‘keywords’

• Property server view

• e.g. CDI lists

• cdi devices for BUS
properties (SEND, RECV,
etc.)

• registered Templates for
properties TEMPLATE,
INSTANCES

• ‘split’ device locations for
extended properties, etc.

Devices
• A ‘free’ string used as input.

• e.g. stock property “SRVLOGFILE” takes device ‘name’ as file path
and name.

Security

• Based on User Name and/or Network address

• Fec Name = User Name when servers are clients !

• Applies to WRITE access and to exclusive READ access.

• Usually assigned at the server level, but:

• Can be applied to individual Properties

• Can be applied to individual Devices

• Stock Property “ACCESSLOCK” can be used to assign an access
token to a single specific client process.

• Inherent in API calls ‘SetAccessLock()’, ‘FreeAccessLock()’, etc.

• Exclusive READ can also be registered to take effect only when an
Access Lock is in play !

Error (status) Codes

• Are in general NOT exceptions!

• Systematic codes (< 512)

• Several used at the protocol level

• ‘illegal_protocol’, ‘get_subscritption_id’, ‘property_is_mca’, …

• User defined (>= 512)

• Can send data + status !

• return (CE_SENDATA | status)

• e.g. ‘has_query_function’ status is used to signal either property
or device query precedence.

• e.g. ‘information_static’ applied when polling a property whose
data will not change.

• “here’s the data, but there’s something else you should probably
know ….”

Part II: Services and Utilities

• Naming Services (scope = site) slide 20

• Globals (scope = context) slide 31

• Time Synchronization (scope = site) slide 34

• Logging (scope = site) slide 36

• Alarms (scope = context) slide 38

• Archive (machine parameters) (scope = context) slide 59

• Archive (events) (scope = context) slide 86

• States (scope = context) slide 95

• Cycler (scope = context) slide 100

• Statistics (scope = context) slide 105

• Spy (scope = context) slide 112

• Command Line (client utility) slide 114

• Debugging (server utility) slide 121

Naming Services

Joe, the Programmer

Naming Services
• Hierarchical Naming convention

• “/context/server/device[property+”

• subsystem provide extra (browseable) information

• context and server names :
• <= 32 characters

• must begin with alpha-numeric character

• cannot contain ‘\’, ‘/’, or ‘*’

• But please avoid blanks and exotic characters and names like
“12345678” !

• context :
• can be omitted (if no ambiguity)

• n.b. “DEFAULT” is NOT a context !

• device name, property name :
• <= 64 characters

• No character restrictions

• But please avoid blanks and exotic characters !

Naming Services
• Hierarchical Naming convention

• device name (further
information)

• NOT required to be registered
or supplied in call !

• 64 character official limit (for
queries, redirection, etc.)

• can contain 1024 characters !
(any individual contract)

• e.g. device =
“cdiDev1,cdiDev2,cdiDev3, …”

• A ‘/’ can sometimes be used to
extend the hierarchy !

• ‘blanks’ sometimes not a bad
option, after all !

Naming Services

• wild cards

• e.g. device or property =
“*”, “ABC*”, “*DEF”,
”*CD*”

• BUT:
• don’t know what will

come back !

• requested data type must
be able to carry ‘device
name’, value, status
• NAME64DBLDBL,

NAME16FLTINT, USTRING,
etc.

• an MCA property handles
the call as such

• else loops through all
devices or properties!

Naming Services

• subsystems
• <= 16 characters

• Registered subsystem compared with an allowed list !
• Not it the list ? -> no subsystem information !

• decorated context + no subsystem (at registration):
• decoration is used as the subsystem and removed (!) from the

context !

• e.g.
context = “TTF2.RF”, server = “KLY.INTERLOCK”, subsystem = “”

 -> context = “TTF2”, server = “KLY.INTERLOCK”, subsystem = “RF”

• Name resolution will honor a request for “/TTF2.RF/KLY.INTERLOCK”
• “TTF2.RF/KLY.INTERLOCK” and “/TTF2/KLY.INTERLOCK” both map to the same

server !

• Exceptions: context.TEST, context.SIM always allowed.
• (=> Maybe we can cleanup context.TEST and context_TEST, etc. ?)

Naming Services

• Clients/Servers use plug-and-play !

• Equipment Name Server (ENS) manages control system server
database.
• Context + server -> EQM name + FEC

• FEC -> address (IP and port)

• (Properties and devices managed at the server)

• ANY new server is allowed to plug into the system.
• (Optionally restrict allowed ‘root’ contexts)

• BUT importance is administered !

• On-line status is regularly checked
• If allowed dead time (default = 3 months) exceeded -> server is

removed !

• Clients find an address by asking the ENS
• ENS down or doesn’t know -> ask local address cache.

Naming Services

Naming Services

Naming Services

• How does a client know where the ENS is ?

• API call sets the ENS address (takes precedence).

• environment variable TINE_HOME points to location of file
cshosts.csv (list of installed name servers).

• Ask DNS for address of “tineens” in local domain.

• Issue a multicast asking for an ENS to respond.

Naming Services

• Group Equipment Name Server (GENS)

• Companion server to the ENS

• Manages groups, group members, group device lists.

Naming Services
• ENS administration (who is allowed ?)

• Registered administrators

• The FEC’s ‘responsible’ party is allowed to remove the
associated FEC.
• Login name (user name) must match ‘responsible’.

Network Globals

Network Globals

• Keyword parameter set multicasted (producer-consumer)

• Default rate = 1 Hz

• Keyword oriented (no device names)

• Server = “GLOBALS” (in the given context).

• Attempts to attach() to e.g. “/context/GLOBALS*BeamCurrent+”
are coerced into listening for globals multicast !

• ‘receive()’ (java) or recvNetGlobal() (C) are the preferred API
methods.

• n.b. any server can ‘produce’ data via ‘sendNetGlobal()’.

Network Globals
Utilities and Viewers :

TIME Synchronization

TIME Synchronization

• Server “/SITE/TIMESRV” multicasts the reference time at 1 Hz.

• A server automatically syncs to this incoming time (if
available)
• Does NOT adjust local clock !

• Applies an offset to the current clock when applying data
timestamps or log entries.

• 5 consecutive updates must give a consistent offset !
• Considers both jumps and slopes in various NTP correction strategies

which might be running in parallel.

• Offset must be > 100 msec.

• Note:
• a server schedules activity based on its clock

• a client accepts or rejects incoming data based on its timestamp
(among other things).

Central Logger

Central Logger

• Server “/SITE/CLOG” is happily logging entries sent its way
from any context on site.

• API: clslog() will send a log entry to the central logger (see
http://tine.desy.de) for details.

• Event Server automatically logs incoming events

• Watchdog automatically logs restarts

• Not seeing much action at the moment ….

http://tine.desy.de/
http://tine.desy.de/

Alarm System

Alarm System

• Alarms

• Belong to a registered device !

• Defined by: /context/server/device + alarm code + starttime

• Have a history

• Tagged as ‘new’, ‘transient’, ‘oscillating’, ‘data changed’, ‘heartbeat’,
‘terminated’.

• Have ‘static’ information defined by alarm code

• alarm tag, various descriptive texts, url, severity, data format

• Have ‘dynamic’ information

• descriptor, alarm time, alarm start time, alarm data

• Alarm Message: dynamic part + cross-reference to static part.

Alarm System
• e.g. a magnet alarm :

static information:

dynamic information:

Alarm System

• static alarm definitions:

• Given by alarms.csv (or
fec.xml or via API)

• Can be edited ‘on-the-fly’

-> but changes are volatile !

• Best to leave ‘alarm
system’ = 0

(signals the CAS to apply the
alarm system registered for
the server issuing the
alarm).

Alarm System
• Alarm Code:

• Systematic TINE error codes < 512
• e.g. hardware_error = 79
• Have default severity (most have ‘8’)
• Have default alarm system = 0

• User defined 512 and above (require corresponding static alarm definition in
order to apply non-zero severity).

• Alarm System Numbers :
• No particular systematics used
• Alarm system ‘tags’ are more relevant in displays
• e.g. alarm system 100 = ‘Magnets’

• Alarm Severity:
• 0 = none -> do not display
• 1 -> 3 = information
• 4 -> 7 = warning
• 8 -> 11 = error
• 12 -> 14 = impending doom
• 15 = operations not possible

• Alarm Data:
• 64 bytes to include ‘other relevant information’

Alarm System
Only set to non-zero if setting
alarms in another category
than the server !

Low severity => informational

No data

Useful reference to “further
information”

Alarm System

• Every server has a Local Alarm System

• Does nothing unless:

• Alarms are defined (see alarms.csv, fec.xml, or API call, or code < 512)

• code, severity, tag, + …

• Alarms are set (and cleared)

• via API : setAlarm(), clearAlarm() (terminateAlarm())

• via alarm watch table (see almwatch.csv, fec.xml, or API call)

• Special cases: Link error alarms, disk space alarms

• Manages the local alarm list to first order

• Sets the alarm ‘descriptor’ bits

• ‘new’, ‘heartbeat’, ‘oscillating’, ‘data change’, ‘transient’, ‘terminated’

• Sets the alarm timestamps (start time, alarm time)

• Collapses alarm storms to a single alarm.

• Offers alarms list to any interested clients (e.g. the CAS)

• Clears alarm list at the Central Alarm Server (CAS) upon start up.

Alarm System

• Alarm descriptors
• ‘new’ applied to initial entry into the alarm list.

• start time = alarm time = time of setAlarm().

• ‘heartbeat’ applied every 20 minutes
• alarm time updated

• ‘oscillating’ applied when a ‘cleared’ alarm has been reset prior
to termination
• alarm time updated

• Note: clearAlarm() augments a clear counter but by itself does not
mark an alarm as terminated

• ‘oscillation window’ (default = 8) gives clear-termination threshold.

• ‘data change’ applied when alarm data have changed
• alarm time updated

• ‘data change window’ (default = 30 sec) gives elapsed time before a
new alarm time is applied.

Alarm System

• Alarm descriptors

• ‘terminated’ applied when the alarm is declared as terminated.

• alarm time = time of termination.

• clear counter > oscillation window

• removeAlarm() has been called.

• ‘transient’ applied when setAlarm() declares the alarm as
transient.

• start time = alarm time = time of setAlarm()

• ‘new’ and ‘terminated’ applied simultaneously !

• does not have a duration !

• ‘test’ (= ‘suppress’) is ignored by the CAS

• ‘disabled’ is set by the CAS

Alarm System

• setAlarm() strategies
(alarm system managed):

• setAlarm() strategies
(user managed):

clear all alarms at start
of update cycle

get the new data

set alarm if necessary

get the new data

or set alarm

either remove alarm

Let the system check for
oscillating alarms !

‘remove’ marks an
alarm for termination
immediately !

Alarm System

• Automatic Alarms: Alarm Watch Table

• Monitors a specific property via a local call to the associated
equipment module.

• Checks readback value against low and high thresholds

• value_too_high, value_too_low

• or Checks a readback value against a valid pattern

• invalid_data

• Supply monitor parameters via almwatch.csv, fec.xml, or API.

• Can supply ‘on-the-fly’ (but new information is volatile).

• All ‘setAlarm()’ and ‘clearAlarm()’ logic is done for you.

Alarm System

Alarm System

• Automatic Alarms:

• ‘link_error’ alarms (middle layer servers).

• can suppress if desired

• Disk space alarms:

• ‘low_disk_space’ if given path does not have the registered
minimum disk space.

• Yes, there’s an API call.

Alarm System

• Central Alarm Server (CAS)

• Uses a ‘pull’ strategy to acquire alarms

• NOT a ‘push’ strategy from the server!

• Has a configuration database giving which servers to listen to.

• A server knows if the CAS is listening to it !

• Servers ‘clear’ their alarm lists at the CAS when the start up.

• /context/CAS/server + “REMOVEALARMS”

• Can take ‘actions’ upon specific alarms

• Trigger events

• Send emails (SMS)

• Alarms pulled via stock properties “NALARMS” and “ALARMS”

Alarm System

• “NALARMS”

• Provides a ‘snapshot’ of the current alarm situation at the server.

There are 40 alarms in the list

Acquire info for all devices

Most recent alarm time stamp

Highest alarm severity in the list

18 alarms have the most recent alarm time

40 alarms have the highest severity

Alarm System
• “ALARMS”

• Can provide range as input (default = all alarm times)

• And minimum severity as input (default = 0)

Alarm System

• Database manager:

Alarm System

• Alarm Systems manager:

Alarm System

Alarm System
Alarm Analysis

Alarm System
• Availability

• server : “/<context>/ALARMSTATE”

• monitor fatal alarms for all alarm systems from CAS.

• At least 1 alarm => system NOT AVAILABLE

Archive System

Archive System

• Central Archive (2 processes)
• “ARCHIVER” : Netmex Gateway / Archiver

• “HISTORY” : archive retriever / viewer configurations

• data always available

• many filter options to reduce unnecessary data storage

• ‘property’ server

• Local History (server sub system)
• short term storage (ring buffer with defined depth)

• long term storage (stored on disk with defined depth in months)

• data disappears when ‘depth’ is surpassed
• Can optionally and purposefully ‘keep’ data if desired.

• filter on tolerance only (absolute or relative).

• ‘device’ server
• history data accessed via <property>.HIST meta property

Archive System

• Archive Record

• Refers to data set take from some property and device(s).

• Make use of multi-channel arrays (MCAs) as often a possible.

• => record is an array

• Archive Retrieval

• Single array element or scalar over a time range

• Entire record at a specified time.

• Can Specify

• Range : start time to stop time (default: now – depth to now)

• Array element index : (default: given by device name)

• Raster : (default: automatic)

• -> YES, we can return ALL stored data in the doocs manner as well.

• Filter : min value, max value (default: ALL)

Archive System

• Notes about rastering
• By default: the server decides on a raster

• Specifying start and stop times and buffer size defines the raster

• e.g. last 24 hours, 4000 points

• Lightning fast look ups !
• Skip through the stored data at the raster points !

• No data massaging or the like
• What was taken is what was stored is what you get !

• Points of Interest are included in the returned data set if the
raster does NOT = 1.
• Peaks and dips will appear in the displayed data set !

• (this isn’t always perfect).

• Archive Viewer uses an ‘optical zoom’ approach
• Any zoom will re-acquire data sets at the new zoom boundaries

• And will have a smaller raster !

Archive System

• Central Archive Server

• Breaks down acquired data records into properties and keywords

• Data from “/PETRA/SomeServer/#0[ALLDATA+” can be given sensible
record names !

• e.g. “WidgetTemperature”

• Has a broad and definable range of filters.

• Registers property aliases referring to originating property call.

• e.g. “SomeServer.ALLDATA” is a property alias for
“WidgetTemperature”

• Has a database manager

Archive System

Archive System

Archive System

Archive System

Archive Filters

Archive System

• Filters + Archiving Rules
• call status <> 0 => do not archive

• But call status is now archived separately !

• data timestamp does NOT change => do not archive
• FILTER = ONCE -> archive a single record at

• archive server start
• reconnect to server (following server link timeouts)
• Midnight
• e.g. MCA array device names

• archive at least once per archive heartbeat (15 minutes)
• data change within tolerance ? -> do not archive (unless heartbeat)
• FILTER = FAST -> archive at polling interval
• FILTER = SLOW -> archive no more often than once/minute
• FILTER = NEVER -> do not archive

• record available as NETMEX entry only (data pump)

• else : archive no more often than once/two seconds
• other defined filters also apply ….

Archive System

• Central Archive Server

• Manages all viewer configurations

• Archive Viewer

• MCA Viewer

• Scope Trace Viewer

• Now stores call status/record if NOT = 0

• Now stores user provided annotations/record

Archive System
• Local Archive System

• Record given by a call to the local equipment module
• must ensure unique record index !

• Must have consistent data size and format !

• no data kept if return code <> 0 !
• access parameter contains the CA_HIST bit if call is coming from the local

history sub-system.
• Note: This is useful !

• Short term ring buffer storage
• depth of ring buffer => depth in time

• Polling interval = 1 Hz -> depth is in seconds

• filter on data time stamp only !
• volatile: starts from scratch upon server restart !

• Long term disk storage
• depth in months

• keeps ‘daily’ files by default

• filter on tolerance (absolute or relative)
• old data removed

• Can also set minimum free disk space !
• Can also explicitly move files to SAVED area !

Archive System

• Local Archive System
• local configuration database

• history.csv, fec.xml, or via API

• contain call, storage, and filter information

• history manifest (hstmf.csv) is dumped after server start.

• HISTORY_HOME gives location of archive files
• default = “../HISTORY”

• Use ‘mkhstfiles’ utility to make the ‘standard’ set of history files
• ‘worst-case’ non-fragmented file set

• => fast lookups

• rotated when necessary

• very useful on windows systems !
• e.g. pandora servers

• Note: java servers store data primitives as big-endian regardless
of the platform architecture !

Archive System

• Local Archive System

• data retrieval based on stock meta properties

• <property>.HIST (time range)

• Note: input = 1 integer value gives number points in range !

• <property>.HIST@ (snapshot at given time)

• Note: returns next record at or more recent than given time !

• <property>.ARCH (redirect to central archive)

• If selected property is not being archived then these calls return
an error !

• A property query will return the short and long term depths

• = 0 => no history configured !

• Can add/edit local history information ‘on-the-fly’

• Changes are volatile !

Archive System

• Local/Central Archive System

• input:

• CF_NULL

• start time given by requested data array size; stop = NOW

• 1 CF_INT32, CF_DOUBLE

• UTC start time (stop = NOW for trend call; stop = start for snapshot)

• 2 CF_INT32, CF_DOUBLE

• UTC start and stop times

• 3 CF_INT32, CF_DOUBLE

• UTC start and stop times; desired array index (default = 0)

• 4 CF_INT32, CF_DOUBLE

• UTC start and stop times; desired array index (default = 0); sampling raster

• 1 CF_FWINDOW (CF_INTINTFLTFLT)

• UTC start and stop times; lower and upper data limits

Typically used !

Typically used !

Archive System

• Local/Central Archive System

• requested data types

• 1 CF_INT32, etc.

• -> return number points in interval given

• CF_FLOAT and other ‘simple’ types

• snapshot of the stored data at time requested.

• CF_DBLDBL, CF_FLTINT, CF_INTINT, CF_NAME64INT, etc.

• -> array of value-timestamp pairs

• CF_TDS (CF_INTFLTINT)

• DOOCS style (UTC time, data, status (= 0))

• CF_HISTORY

• Array of ‘HISTORY’ instances

• Carries any stored data type + timestamp, system stamp, user stamp

Archive System

• Local/Central Archive System user APIs
• don’t try use the ‘stock’ and ‘meta’ properties unless you really

know what you’re doing !

• C-Lib:
• GetArchivedDataAsAny()

• GetArchivedDataAsText()

• GetArchivedDataAsSnapshot()

• GetArchivedDataAsFloat()

• Java:
• Thistory class with lots of static methods to retrieve data !

• MatLab:
• tine_history()

• command line:
• thistory

Archive System

• Archive Viewer

• acquires and displays trend data

• Normal mode

• 2 sources ! (central archive and local history)

• displays data from source with fewest number points in given range but
with at least 500 !

• checks for status information

• checks for annotations

Archive System

Enough points from central archive !

Found an annotation !

Archive System

Reason for ‘No Data’ ?

Archive System

• Archive Viewer

• Local history Modes

• configured local history subsystems !

• general browsing !

Archive System

Archive System

• Archive Viewer

• Array snapshots and movies

• Correlation plots

Archive System

Archive System

Archive System

• Archive Viewer designed to ‘plot’ data

• trends

• snapshots

• ‘text’ as string shown in data label and tool tip

• How to show ‘complex’ data elements ?

• Can store / retrieve any data type (except CF_HISTORY)

• e.g. data stored as NAME16FLTINT

• => a range of these will be an 'array' of NAME16FLTINTs coupled with
a set of time/data stamps.

• how to display this in the archive viewer?

• “trap and ask?”

• i.e. ask the user which field he wants to display vs. time ?

Archive System
• Multi-Channel Analyzer uses archive system !

Event System

Event System

• Event server
• “/SITE/EVENTMGR”
• provides event numbers to event archive servers

• defined event window : default 5 seconds

• record event participants
• which triggers are associated with an event number ?

• Event Archive Server
• “/<context>/EVENTS” and “/<context>/EVENTSTORE”
• reacts to event trigger

• => event script (“get this, get that, wait here, sent this there”, etc.)

• generally acquires data from 1 or more sources
• post mortem data stored in hardware or short term local history
• designed for transient recorders
• Can store any type of event data

• ‘positive’ events (e.g. “get orbit settings at injections”, etc.)
• store video train on demand, etc.

Event System

• data retrieval : must specify

• event trigger : (what kind of event ?)

• event time : (when ?)

• stored target : /context/server/property/device

• events defined via event database manager

• event triggers sent via API

• SendEventTrigger()

• Sent to /context/EVENTSTORE/trigger[TRIGGER]

• state change triggers are sent automatically from STATE server.

• events can be annotated

Event System

Event System
• Generic event viewer:

Event System
• Generic event viewer:

Event System
• Transient Recorder viewer

Event System
• BPM Event viewer

Event System

• Event System APIs

• C-Lib

• sendEventTrigger()

• And from the ‘eventtools’ lib: (no documentation yet)

• GetArchivedEventData()

• GetArchivedEventList()

• GetArchiveTriggers()

• GetArchiveComment()

• Java

• Numerous calls from eventArchive.jar

• MatLab

• tine_eventdata

• command line

• teventdata

State Server

State Server
• “/<context>/STATE”

• accepts state change commands

• forwards trigger to EVENTSTORE

• counts time spent in given state

• Manages operation statistics profiles (i.e. those ‘pie slices’)

State Server

State Server
• Operation Statistics

State Server
• Operation Statistics “ALARMSTATE” used for availability statistics !

The CYCLER

The CYCLER

• automatic system data stamps via server “CYCLER” and
property “CycleNumber” :

The CYCLER

• If a cycler exists for ‘my’ context then a server will :

• listen for cycle multicasts

• apply cycle number to the data stamp of all property data being
accessed.

• support cycle trigger functions

• initiate/synchronize hardware i/o

• supply cycler delay offset (if necessary)

The CYCLER

The CYCLER
Cycle Delay and Cycle Offset :

I ‘know’ I’m going to be late
getting my data ready …

I ‘know’ the incoming cycle is
‘off’ by some number of counts …

FEC Statistics

FEC Statistics

• “/<context>/FECSTATS”

• maintains general statistics of all important servers in a context

• stock property “SRVSTATS” from each server

• reboot counts from ENS

• timeouts (as determined by the FEC stats server itself)

FEC Statistics

FEC Statistics

FEC Statistics

FEC Statistics

Control System SPY

Control System SPY

• “/<context>/CSSPY”

• who’s watching who (big-brother style).

• scans all important servers in a context

• makes use of stock properties:

• “CLIENTS”

• “SRVCOMMANDS”

• “USERS”

Control System SPY

Command Line Utilities

Command Line Utilities

• See http://tine.desy.de (command line utilities)

• Query Utilities:

• tservers

• queries the Equipment Name Server ENS for registered servers

• tdevlist

• queries a server for its devices

• tproplist

• queries a server for its properties

• tinfo

• queries a server for property information

http://tine.desy.de/

Command Line Utilities
e.g.

Command Line Utilities

• Data Acquisition:

• tget

• synchronous read-only call to server

• tmonitor

• asynchronous read-only poll to server

• tsend

• synchronous write call to server

• tputget

• synchronous atomic write/read for attibute style properties

• tsendrecv

• synchronous atomic write/read for call style properties)

• twait4target

• monitor readback from a server until a requested target is met

Command Line Utilities
e.g.

Command Line Utilities

• Services:

• thistory

• queries the archive server for archive data

• talarms

• queries a specific server for its current alarm list

• tglobals

• monitors and displays the current globals for the context given.

• teventdata

• queries the event archive server for event data

Command Line Utilities
e.g.

Debugging Utilities

Debugging Utilities

• See http://tine.desy.de -> “Remote Debugging Tools”

• Server Problems

• In the unlikely event of a Crash

• check core dumps, stack traces, etc.

• report any TINE bugs to http://tinetracker.desy.de

• note: segmentation faults or exceptions often occur in user code
within dispatch routines !

• check the last few entries in fec.log

• detected memory overwrites in dispatch routines are logged (win32).

• TINE configuration problems are logged.

http://tine.desy.de/
http://tinetracker.desy.de/

Debugging Utilities

Debugging Utilities

• Server Problems

• In the unlikely event of a Hang

• check CPU load for the process

• near 100% => infinite loop problem

• near 0% => thread deadlock

• use attachfec to check the activity

• no response => debug thread is blocked too!

• ‘get semaphores’ to check for deadlocks

• ‘set debug=1’ to check for possible infinite loops, etc.

Debugging Utilities
• Normal state of semaphores and mutexes:

Debugging Utilities

• Server Problems

• Make use of attachfec as a general rule.

• Windows: GUI

• Unix: command line tool

• ‘local pipe’

• does not involve the network

• attachfec must run on same host as the FEC.

• ‘remote stream’ connects via a dedicated TCP socket.

Debugging Utilities
• e.g. attachfec /REGAE/Mag.Corr

very useful !

Debugging Utilities

get clients

get client(2)

get contracts

get contract(7)

Debugging Utilities

What are these and how did
they get there ?

Debugging Utilities
get/set style commands
(legacy routine)

Debugging Utilities
‘Call’ style (modern)

Then: type ‘reload’ at the
command prompt to call the
designated function.

e.g.

Debugging Utilities
• attachfec ENS (someone who is usually busy!)

Debugging Utilities
• NOTE: java servers

• have a reduced set of debug commands

• have slightly different output with debug > 0

Debugging Utilities
• General overview of all servers :

Debugging Utilities

• Client problems (where the client is not a FEC)

• just some process (not bound to a host, port, pid, …)

• no de-facto log file.

• GUI applications with the ACOP spider can launch a console-like
debugging session. (java and activeX)

• ACOP Tarantula can provide a complete hierarchical link status tree
(java only)

• Can also use ‘attachfec’ locally (even though it isn’t a FEC) if the
partners can agree on a pipe name!

• e.g. the pid

Debugging Utilities

Debugging Utilities

Debugging Utilities

Debugging Utilities

Debugging Utilities

• Finding the ‘bad’ client …

• A server is ‘under attack’ from some client

• The clients network address (including port) is displayed in the
server’s fec.log as well as on the debug console.

Debugging Utilities

• login to 131.169.119.64 and use e.g. ‘netstat’ (for linux)

Port address of the
offending client

pid process name

Debugging

• Things that sometimes happen ….

• Rapid polling from a client

• e.g. a script running through all 1000 devices one-by-one at 1 Hz.

• will make the server (and probably the network) very busy

• a script doing this will also make the ENS busy !

• Use ‘filters’ to help find needles in haystacks …

• positive filter

• negative filter

Debugging
a positive filter :
 set filter = REGAE

Debugging

But sometimes
you want to filter
‘out’ and not filter
‘in’ :

e.g. get rid of
“TVUSER” from
the output !

Debugging a negative filter :
 set filter = -TVUSER

YES! You can have a
positive AND a negative
filter simultaneously !

Part III: The Instant Client

It doesn’t do everything, but it tries …

The Instant Client

• a control system browser

• queries ENS for contexts, servers, and subsystems

• these entries are fixed in the java combos!

• and should be fixed in the windows version as well!

• queries selected server for devices and properties

• the populated combo boxes here are NOT fixed

• BUT any random, entered property and device names are unlikely to
succeed!

• determines one of :

• flat hierarchy

• device-query precedence (device server model)

• property-query precedence (property server model)

The Instant Client

• queries selected property for all relevant information

• data size and format

• data array type

• units and settings

• property description

• number of overloads (usually = 1)

• history depths

• information used to fill in default selections

• e.g. Draw Mode = “poly line” when array type = TRACE

• Draw Mode = “histogram” when array type = CHANNEL

• Draw Mode = “text” when array type = SCALAR or UNKNOWN

Note: this particular adjustment is sometime annoying
=> need a checkbox to turn this off (coming soon!)

The Instant Client

Information from a property query

The Instant Client

The Instant Client

The Instant Client

The Instant Client

• Hot off the presses:

The Instant Client

• overloaded properties

• a server can register a property more than once (with different
data input/output criteria) !

• e.g. output format = INT32 -> raw hardware readback;

 output format = FLOAT -> calibrated readback

• e.g. structured format supporting ‘legacy’ as well as ‘modern’
structures.

The Instant Client
e.g. “SYSALARMS”:
legacy call

The Instant Client
e.g. “SYSALARMS”:
modern call

The Instant Client
• Input panel

• accepts all input data types (except STRUCT)

• (parsing structure input might be a good cosylab assignment)

• array input:

• delimiter = comma or white space

• strings with blanks enclose in ‘”’

• special case : type TEXT

• Can add a CR, LF, or CR-LF as a post-fix

• e.g. RS232 input requires a termination character

• important Reminder:

• Data Input does NOT imply WRITE ACCESS !

The Instant Client

A “READ” call with input

The Instant Client
Complex data types: A parsing nightmare …

Let’s change
this !

The Instant Client
‘escape’ the characters that belong to the string !

The Instant Client
• Menu Items

• File:

• ‘New’ launches new Instant Client

• ‘Clone’ launches new Instant Client and preserves current settings

The Instant Client
• Menu Items

• Options:

• Suppress Query Properties -> hide ALL over-ridden meta properties

• Property Query Precedence -> re-acquire device list following change
of property

• Device Query Precedence -> re-acquire property list following change
of device

• Flush Address Cache -> force new address acquisition from ENS

• Reload Names -> re-acquire contexts and servers list from ENS

• Note: re-selecting a context will automatically re-acquire servers for the
given context !

The Instant Client

You can uncheck these menu items where “convenient”
(e.g. accessing only the BUS properties from a CDI Server)

The Instant Client

• Switching from property “RECV” to “RECV.CLBR”, “SEND”,
“SEND.RECV.ATOM” etc. will automatically re-query devices
unless you uncheck “Property Query Precedence” !

The Instant Client

• Menu Items

• Data Access

• Use UDP (default) -> normal peer-to-peer communication via UDP

• Use TCP -> normal peer-to-peer communication via TCP

• respects given timeout parameters

• Use STREAM -> peer-to-peer communication via TCP Stream

• timeout only on connection establishment

• i/o error only on TCP stack detected error

• does not otherwise timeout !

• Note: only multithreaded servers support TINE STREAM transport

• Use NETWORK flag (multicast)

• requests transfer per multicast

• consistent only with UDP and asynchronous data acquisition.

The Instant Client

• Menu Items

• Monitor Options

• TIMER

• normal asynchronous (server-side) polling monitor.

• data sent to caller at the designated timer interval

• DATACHANGE

• normal asynchronous (server-side) polling monitor.

• data examined at the server for changes.

• data sent to caller if a change has been detected

• zero-tolerance at the server !

• caller can supply a notification tolerance (but NOT the instant client)

• EVENT

• normal asynchronous (server-side) polling monitor.

• But the polling interval is irrelevant

• data sent to caller only if it has been scheduled at the server

• heartbeat updates are suppressed

The Instant Client

• Menu Items

• Debug Options:

• Show Fec Information

• display relevant FEC information of the FEC pertaining to the calling
parameters showing.

• Debug Off

• Turns local debugging OFF. Closes the TConsole Panel.

• Debug Level 1 (, 2, 3, 4)

• Turns local debugging ON at debug level 1 (,2, 3, 4). Opens the TConsole
Panel (see debugging).

The Instant Client

• Stock Properties

• “Show Stock Properties” check box: hidden by default

• used systematically

• => you need to know how they work in order to use them yourself!

The Instant Client

• Stock Properties

• “ACCESSLOCK”

• Not an attribute ! Separate READ and WRITE behavior !

• i.e. the property is overloaded.

• Use the API calls instead !

• SetAccessLock(), GetAccessLockInformation(), GetAccessLockStatus(),
FreeAccessLock()

• “ACTIVITY”

• READ only

• Used by FEC Remote Panel

• Use the overload with the “AQS” structure tag in the Instant Client

• -> quasi meaningful information for the casual user

• “ADDALIAS”

• WRITE only

Scope: Server

Scope: FEC

Scope: FEC

The Instant Client
• Stock Properties

• “ADDALIAS”

• WRITE only

• “SRVALIASLIST”

• READ only

Scope: FEC

The Instant Client

• “Bigness” -> “Amplitude”

The Instant Client

• Stock Properties

• “ADDHISTORY”
• WRITE only

• Used in the “Add Local History” panel in the Archive Viewer

• Don’t even think of trying to use this from the Instant Client!

• “ADDUSER”, “ADDIPNET”
• WRITE only

• List of users, IP nets (can be CIDR qualified), to add to the ACL lists of the
equipment module

• Updates local database information (non-volatile changes !)

• No input => forces a re-scan of local database information !

• “DELUSER”, “DELIPNET”
• WRITE only

• List of users, IP nets to be removed from the ACL lists of the equipment
module

• Updates local database information (non-volatile changes !)

Scope: Server

Scope: Server

Scope: Server

The Instant Client
• Stock Properties

• “USERS”, “IPNETS”

• READ only

• no input => returns list of ‘allowed’ users or IP Nets for the
equipment module

• input = registered Property or Device => returns list of ‘allowed’
users or IP Nets for the give property or device

Note: “DENIEDUSERS” gives list of users on the
denied access list (“these guys can’t even READ!)

Scope: Server

The Instant Client

• Stock Properties
• “ALARMS”

• READ only

• Used by CAS

• input
• none => all alarm times

• 2 INT32 values (start and
stop as UTC timestamps)

• device = ‘*’ => all alarms

• overload with structure
“AMSr4” of most interest

• “ALARMSEXT”
• completely equivalent to

“ALARMS”

• deprecated

Scope: Server

The Instant Client

• Stock Properties

• “NALARMS”

• READ only

• Array of (up to) 5 INT32 values (see Alarms)

Total number of alarms
Timestamp of most recent
Highest severity
Number at most recent timestamp
Number at highest severity

Scope: Server

The Instant Client
• Stock Properties

• “ALMDEFS”

• READ only

• array of static alarm information for defined alarms

Scope: Server

The Instant Client

• “ALMWATCHTBL”

• READ/WRITE

• But don’t try to
WRITE with the
instant client !

• WRITE used by Alarm
Viewer to add/edit
watch table entries

• READ returns current
list of alarm watch
table elements

Scope: FEC

The Instant Client

• Stock Properties

• “NALMDEFS”, “NALMWATCH”, “NDEVICES”, “NPROPS”,
“NPROPERTIES”, “NHISTORIES”, “NUSERS”, “NIPNETS”,
“NSTOCKPROPS”

• READ only

• Return a single INT32 giving the “number of” …

• “CONNECTIONS”

• READ only

• A middle-layer server’s

 connection table

• e.g. used by the

 Tarantula

The Instant Client
• Stock Properties

• “CONTRACTS”

• READ only

• overloaded => use the
“CTQSr4” structure

• e.g. used by the FEC
Remote panel, SPY
server

• “CLIENTS”

• READ only

• overloaded => use the
“CLNQS” structure

• e.g. used by the FEC
Remote panel, SPY
server

Scope: FEC

The Instant Client
• Stock Properties

• “DEVICES”

• READ only

• server’s registered device list

• “DEVDESCRIPTION”

• READ only

• A registered device’s

 description

• e.g. BPM Server:

Scope: Server

The Instant Client

• Stock Properties

• “PROPERTIES”

• READ only

• “PROPS” is an alias

• multiply overloaded

• use NAME64 for a list

• use “PRPQSr4” structure for

 full info

• “STOCKPROPS”

• READ only

• analogous to “PROPERTIES”

Scope: Server

Scope: FEC

The Instant Client
• Stock Properties

• “HISTORIES”

• READ only

• overloaded

• use NAME64 for a list of properties with local history

• Use “HRSr4” structure for detailed information

Scope: Server

The Instant Client
• Stock Properties

• “LOGFILE”

• READ only

• Returns the most recent entries of the current FEC log file

• number of entries determined by READ buffer size

• either virtual file (e.g. VxWorks) or disk file (including file rotations)

Scope: FEC

The Instant Client

• Stock Properties
• “LOGCOMMANDS”

• READ/WRITE

• en/dis-able COMMAND logging inside ’fec.log’

• “LOGDEPTH”
• READ/WRITE

• specify depth of fec.log file (before rotation)

• “SRVLOGFILES”
• READ only

• List of ‘text’-based log files
• e.g. *.log, *.csv, *.txt

• input:
• via input data or ‘device name’

• none => use the FEC_HOME location

• otherwise => find files in the path given.

Scope: FEC

The Instant Client

• “SRVLOGFILES”

• READ only

No path = FEC_HOME path

Path = l:\database
(=> I know this is a windows system)

The Instant Client

• Stock Properties

• “SRVLOGFILE”
• READ only

• input:
• via input data or ‘device name’

• none => fec.log from the FEC_HOME location

• otherwise => the file given

• return:
• the (text) file input (most recent N bytes; N = requested data size)

• “SRVBINFILE”
• READ only

• input:
• via input data or ‘device name’

• none => fec.log from the FEC_HOME location

• otherwise => the file given

• return:
• the (binary) file input (most recent N bytes; N = requested data size)

Scope: FEC

The Instant Client

• Stock Properties

• “STRUCTFORMAT”

• READ only

• input = ‘’tag” of interest

• structure information

• used in data type ‘discovery’

• “BITFIELDFORMAT”

• READ only

• input = ‘’tag” of interest

• bitfield information

• used in bitfield ‘discovery’

Scope: FEC

The Instant Client

• e.g. “How does
this work ?

Tagged structure acquisition

The Instant Client

‘learn’ the structure composition via “STRUCTFORMAT”

The Instant Client

“Intelligent” browsing :

The Instant Client
Can obtain individual ‘fields’ :

The Instant Client

• Stock Properties

• SRVADDR

• READ only

• Output:

• Up to 5 NAME32
entries

• port offset

• FEC name

• context

• local name

• server name

•

The Instant Client

• Stock Properties

• SRVOS

• READ only

• return: server (i.e. FEC) OS

• SRVLOCATION

• READ only

• return: server (i.e. FEC) location

• SRVDESC

• READ only

• return: server description

• SRVSUBSYSTEM

• READ only

• return: server subsystem

Scope: FEC

Scope: server

The Instant Client
• Stock Properties

• SRVSTATS

• READ only

• return: a ‘collection’ array of 16 INT32s

• ‘you have to know what they are’ (the FEC panel does)

Scope: FEC

The Instant Client

The Instant Client

• Stock Properties

• SRVSETTINGS

• READ only

• configuration
settings.

Scope: FEC

The Instant Client

• Stock Properties

• SRVSTARTTIME

• READ only

• return: server startup time

• SRVPID

• READ only

• return: server process id

Scope: FEC

The Instant Client

• Stock Properties

• SRVCMDLINE

• READ only

• return: server command
line

• SRVCWD

• READ only

• return: server current
working directory

Scope: FEC

The Instant Client

• Stock Properties

• SRVLASTACCESS

• READ only

• return:
• up to 5 NAME32

values

• info related to
last WRITE
access.
• user

• net address

• property called

• device called

• access time.

Scope: server

The Instant Client

• Stock Properties

• SRVCOMMANDS

• READ only

• return up to 100 of
the most recent
WRITE commands
(struct “WRACCTBL”)

Scope: server

The Instant Client

• Stock Properties

• DEBUGLEVEL

• READ/WRITE

• Sets/gets the debug level at the FEC

• SRVEXIT

• WRITE only

• must be enabled (!) e.g. “SetAllowRemoteManagement(TRUE)”

• input:

• 1 INT32 value gives the exit level

• no input => exit level = 0

Scope: FEC

The Instant Client

• Stock Properties
• SRVIDLE

• READ/WRITE
• must be enabled (!) e.g. “SetAllowRemoteManagement(TRUE)”
• input: 1 INT32 value

• 0 => not idle
• non-zero => idle

• an idle server will NOT call any eqm dispatch routines
• attempts to access the server receive ‘server_idle’

• SRVINIT
• WRITE only
• must be enabled (!) e.g. “SetAllowRemoteManagement(TRUE)”
• no input
• Calls a server’s registered ‘init’ routine.

• SRVRESET
• WRITE only
• must be enabled (!) e.g. “SetAllowRemoteManagement(TRUE)”
• no input
• de-registers all equipment modules and returns all memory to the heap.
• Calls any registered ‘PostSystemInit()’ routine.

Scope: server

Scope: FEC

The Instant Client

• Stock Properties
• DEBUGLEVEL

• READ/WRITE

• Sets/gets the debug level at the FEC

• SRVEXIT
• WRITE only

• must be enabled (!) e.g. “SetAllowRemoteManagement(TRUE)”

• SRVIDLE

• WRITE only

• SRVINIT

• WRITE only

• SRVRESET

• WRITE only

• MESSAGE (write only) text appended to fec.log and on console (e.g.
"address in use" from the ENS)
• WRITE only

Scope: FEC

The Instant Client

• Stock Properties

• MESSAGE

• WRITE only

• input: a text message

• text appended to fec.log and on console

• e.g. "address in use" from the ENS

Scope: FEC

The Instant Client

• Stock Properties (abandoned ?)

• SRVSELFTEST

• READ only

• return: a self-test file with a list of properties/devices (with input)
to access

• each call must return ‘success’ in order to pass the test

• APPDATE

• READ only

• return the last application compile data

• BUT: information must be provided via API (SetAppDate())

• APPVERSION

• READ only

• return the last application version

• BUT: information must be provided via API (SetAppVersion())

Scope: FEC

Scope: Server

The Instant Client

• Meta Properties

• “properties” giving information about other Properties !

• hidden from general browsing !

• displayed in java client via supplying a "." in the property combo
box

The Instant Client

• Meta Properties

• give a 'mechanism' for obtaining something

• do NOT imply 'success'

• e.g. ".HIST" will return 'not allocated' if no history stored !

• .HIST, .ARCH

• input as shown above (as in the central archive, etc.)

• array of INT32 or doubles with 'start', 'stop' ('index', 'raster')

• start, stop in UTC

• so this is getting 'uncomfortable' in the instant client!

• output:

• DBLDBL (what the viewer uses), or FLTINT, or INTFLTINT

• CF_HISTORY not available in the instant client

• .HIST@, .ARCH@

• single input gives the target time.

The Instant Client
Some examples:

no input :

start and stop UTC
as INT32 :

The Instant Client

• History snapshot:

• ‘UTC’ input makes this difficult to use with the Instant Client
• (better to use the archive APIs let the Archive Viewer handle this)

input: target time (UTC)

The Instant Client

• Maybe add a ‘UTC generator’?

• calendar + clock ?

• ‘now’ – N hours ?

• drag-and-drop to input panel ?

The Instant Client

• Limitations

• Structure fields via ‘suggest decorations’

• does not handle ‘nested’ structures !

• if a field is itself another structure, it stops ‘suggesting’

• Structure input not possible

• could provide an input form with fields etc. ?

• could simply try to parse the input according to the known structure
type ?

