
VIEWING ALARMS

TINE Studio (RBE*)

*Real Best Ever

ALARM SYSTEM

 Alarms
 Belong to a registered device !

 Defined by: /context/server/device + alarm code +
starttime.

 Have a history
 Tagged as ‘new’, ‘transient’, ‘oscillating’, ‘data changed’,

‘heartbeat’, ‘terminated’.

 Have ‘static’ information defined by alarm code
 alarm tag, various descriptive texts, url, severity, data format

 Have ‘dynamic’ information
 descriptor, alarm time, alarm start time, alarm data

 Alarm Message: dynamic part + cross-reference to static
part.

ALARM SYSTEM

 e.g. a magnet alarm :

static information:

dynamic information:

ALARM SYSTEM

 static alarm definitions:

 Given by alarms.csv (or
fec.xml or via API)

 Can be edited ‘on-the-fly’

-> but changes are volatile !

 Best to leave ‘alarm
system’ = 0

(signals the CAS to apply the
alarm system registered for
the server issuing the alarm).

ALARM SYSTEM
 Alarm Code:

 Systematic TINE error codes < 512
 e.g. hardware_error = 79

 Have default severity (most have ‘8’)

 Have default alarm system = 0

 User defined 512 and above (require corresponding static alarm definition in order to
apply non-zero severity).

 Alarm System Numbers :
 No particular systematics used

 Alarm system ‘tags’ are more relevant in displays

 e.g. alarm system 100 = ‘Magnets’

 ‘0’ in server configuration => use canonical value !

 Alarm Severity:
 0 = none -> do not display

 1 -> 3 = information

 4 -> 8 = warning

 8 -> 11 = error

 13 -> 14 = impending doom

 15 = operations not possible

 Alarm Data:
 64 bytes to include ‘other relevant information’

• Threshold exceeded:

• Show the threshold and the

value that exceed it !

• Hardware error:

• Show the module address !

ALARM SYSTEM
Only set to non-zero if setting

alarms in another category

than the server !

Low severity => informational

No data

Useful reference to “further

information”

ALARM SYSTEM

 Every server has a Local Alarm System
 Does nothing unless:

 Alarms are defined (see alarms.csv, fec.xml, or API call, or code < 512)
 code, severity, tag, + …

 Alarms are set (and cleared)
 via API : setAlarm(), clearAlarm() (terminateAlarm())

 via alarm watch table (see almwatch.csv, fec.xml, or API call)

 special cases: Link error alarms, disk space alarms

 Manages the local alarm list
 Sets the alarm ‘descriptor’ bits

 ‘new’, ‘heartbeat’, ‘oscillating’, ‘data change’, ‘transient’, ‘terminated’

 Sets the alarm timestamps (start time, alarm time)

 Collapses alarm storms to a single alarm.

 Offers alarms list to any interested clients (e.g. the CAS)

 Clears alarm list at the Central Alarm Server (CAS) upon start up.

Local Configuration issues !

ALARM SYSTEM

 Alarm descriptors
 ‘new’ applied to initial entry into the alarm list.

 start time = alarm time = time of setAlarm().

 ‘heartbeat’ applied every 20 minutes
 alarm time updated

 ‘oscillating’ applied when a ‘cleared’ alarm has been reset prior
to termination
 alarm time updated

 Note: clearAlarm() augments a clear counter but by itself does not mark
an alarm as terminated

 ‘oscillation window’ (default = 8) gives clear-termination threshold.

 ‘data change’ applied when alarm data have changed
 alarm time updated

 ‘data change window’ (default = 30 sec) gives elapsed time before a
new alarm time is applied.

ALARM SYSTEM

 Alarm descriptors
 ‘terminated’ applied when the alarm is declared as

terminated.
 alarm time = time of termination.

 clear counter > oscillation window

 removeAlarm() has been called.

 ‘transient’ applied when setAlarm() declares the alarm as
transient.
 start time = alarm time = time of setAlarm()

 ‘new’ and ‘terminated’ applied simultaneously !

 does not have a duration !

 ‘test’ (= ‘suppress’) is ignored by the CAS

 ‘disabled’ is set by the CAS

ALARM SYSTEM (API)

 setAlarm() strategies

(alarm system managed):

 setAlarm() strategies

 (user managed):

clear all alarms at start

of update cycle

get the new data

set alarm if necessary

get the new data

or set alarm

either remove alarm

Let the system check for

oscillating alarms !

‘remove’ marks an alarm for

termination immediately !

(oscillation not possible)

e.g. PSC Ist-Soll Abweichungen

e.g. RF Modulator trips

ALARM SYSTEM (WATCH TABLE)

 Automatic Alarms: Alarm Watch Table

 Monitors a specific property via a local call to the
associated equipment module.

 Checks readback value against low and high thresholds

 value_too_high, value_too_low

 or Checks readback value against a valid pattern

 invalid_data

 Supply monitor parameters via almwatch.csv, fec.xml,
or API.

 Can supply ‘on-the-fly’ (but new information is volatile).

 All ‘setAlarm()’ and ‘clearAlarm()’ logic is done for you.

ALARM SYSTEM

ALARM SYSTEM (WATCH TABLE)

 Can supply a link filter !

 Column “FILTER” (.csv) or tag “FILTER” (.xml)

 Parse filter string a la

 /context/server/device[property]<comparator>value

 <comparator> is one of “=“, “!=“, “>”, “<“

almwatch.csv

fec.xml

ALARM SYSTEM (AUTOMATIC)

 Automatic Alarms:

 ‘link_error’ alarms (middle layer servers).

analogous to ‘hardware error’ for front end server!

 important information is missing ?

can suppress if desired

 Disk space alarms:

 ‘low_disk_space’ if given path does not have the

registered minimum disk space.

Yes, there’s an API call !

ALARM SYSTEM

 Central Alarm Server (CAS)
 Uses a ‘pull’ strategy to acquire alarms

 NOT a ‘push’ strategy from the server!

 Has a configuration database giving which servers to listen to.
 A server knows if the CAS is listening to it !

 Servers ‘clear’ their alarm lists at the CAS when the start up.
 /context/CAS/server + “REMOVEALARMS”

 Can take ‘actions’ upon specific alarms
 Trigger events

 Send emails (SMS)

 Alarms pulled via stock properties “NALARMS” and
“ALARMS”

and it’s in the fec.log file !

ALARM SYSTEM

 Stock Property “NALARMS”
 Provides a ‘snapshot’ of the current alarm situation at the

server.

There are 40 alarms in the list

Acquire info for all devices

Most recent alarm time stamp

Highest alarm severity in the list

18 alarms have the most recent alarm time

40 alarms have the highest severity

ALARM SYSTEM

 Stock Property “ALARMS”

 Can provide range as input (default = all alarm times)

 And minimum severity as input (default = 0)

ALARM SYSTEM

ALARM SYSTEM

 The Central Alarm Server (CAS)
 Central service for each Context (facility)

 Monitors alarms for selected servers
 collects alarms from their local alarm system.

 sets ‘not responding’ alarms for missing updates.

 Takes ‘action’ for selected alarms
 trigger events

 send emails

 Archives alarms

 Partner for the alarm viewer

ALARM SYSTEM DATABASE MANAGER
Manages CAS Entries !

ALARM SYSTEM DATABASE MANAGER
 Alarm Systems manager:

ALARM VIEWER
Display Information from the CAS only!

ALARM VIEWER

 Disabling alarms …

ALARM VIEWER

 Disabled at the CAS !

Note: the server will still deliver the alarm !

 And remember (!): if the CAS is NOT monitoring a

server then the viewer will NOT show the alarm !

ALARM VIEWER (ANALYSIS)

ALARM MESSAGE VIEWER

• Shows all alarms (terminated as well) for

an alarm subsystem.

• Live alarms in ‘their color’.

• Sorted according to alarm ‘start time’.

ALARM VIEWER

ALARM VIEWER

ALARM SYSTEM
 Availability

 server : “/<context>/ALARMSTATE”

 monitor fatal alarms for all alarm systems from CAS.

 At least 1 alarm => system NOT AVAILABLE

ALARM SYSTEM (AVAILABILITY)

ALARM SYSTEM REGIONS

Coming Soon to a Theater Near You!

