
A Jungle Guide to
TINE Naming:

S. Herb, MCS
08.02.2008

• Expose accelerator control functionality via human-readable object-
oriented component hierarchy

• Make everybody happy (hardware groups, software developers,
operations staff, computers).

Always a set of messy compromises;
lots of work is needed just to end up
with a useable system!

Goals for TINE (&DOOCS) CS Naming

Summary of Presentation

III. Depiction of Accelerator Structure
Accelerator Structure vs. CS Structure

II. ‘Orthographic’ Rules and Conventions
EmbeddedBlanks, camel_case etc.

I. Tine Naming Primer
Address String Names / CS Structure Names

I. Tine Naming Primer
Address String (‘external’ name for CS component functionality)

/CONTEXT / DEVICESERVER / DEVICE / PROPERTY

CS ‘Internal’ Structure Names (but needed for trouble-shooting!)

hostname [points to a computer with an IP#]

FECNAME [points to a TINE process running on the computer]

equipment module TAGNAME [name for a device server within the ‘fec’]

‘export name’ [= ‘DEVICESERVER’ , points to an equipment module]

Subsystem [used for sorting into groups, but not part of name resolution]

TINE NAME SERVER Address Resolution (in TINE Nameserver)

‘/CONTEXT/DEVICESERVER’ => go to

Eqp. Module ‘TAGNAME’ in Process ‘FECNAME’ with PortOffset Y
running on platform ‘hostname’ with IP# Z , listed under ‘CONTEXT’

‘fec’ vs. ‘equipment module’ [1]
Early Times: (FEC= ‘front end computer’, MSDOS, no multitasking)

FEC -- Eqp. Module1 e.g. beam position monitors => DeviceServer ‘BPM’
-- Eqp. Module2 e.g. beam loss monitors => DeviceServer ‘BLM’

Now: (WinXP, Linux …)

Host (= computer, with ≥1 FEC = ‘front end controller’ processes)

FEC-A – Eqp. Module1
-- Eqp. Module2

FEC-B – Eqp. Module3

⇒ Two different ways to support multiple “Device Servers” on a Host,
within a single ‘fec’ process, or with with multiple processes

Recommendation: ?? It depends. Are the devices related?
Do they share a fieldbus ? ...

‘fec’ vs. ‘equipment module’ [2]

Historically (HERA) a lot of confusion was generated by mixing up the address
string and CS structure names, in particular:

Hostname / Fecname / Tagname / ‘ExportName’ = Device Server /

Two possible approaches are:

1. Make them all the same: this works in simple cases but not in general,
so end result is a mix where it holds for many cases but not for all.

2. Make them different: use naming / orthographic conventions to help
distinguish which namespace we are dealing with.

Recommendation: 2. (some details below)

II. Orthographic Rules and Conventions

(+ see http://adweb.desy.de/mcs/tine/TineNamingConvention.html)

• Special Characters:
Forbidden: “/” “\” “,” “*” tab newline leading & trailing blanks
Separators: “-” “.” “_” are encouraged (but “_” seems to be controversial)

“ “ (embedded blank(s)) strongly discouraged
Others: strongly discouraged (is “+” a borderline case ?)

Recommendation: strictly avoid all except ‘encouraged’ special characters.
They may work ‘now’ but make trouble later (especially when trying to create
bridges between different control systems!)

• Upper/Lower/Camel Case:
TINE names are case insensitive
Recommendation: develop guidelines and enforce them strictly to enhance
readability (see below) [Note: DOOCS UPPERCASE but case-insensitive]

http://adweb.desy.de/mcs/tine/TineNamingConvention.html

Orthographic Rules and Conventions [2]
• ‘Encoded Sequences’ vs. ‘Words’ for Naming
“acclxhebpm” = linux host for hera beam position monitors

“/HERA/HEPhakoWr” = device server for Hera (Protons?) + ???
vs.
/HERA/SCRAPERS
/PETRA/VAC.ION_PUMP

Recommendation:

Use Words or Standard abbreviations for the Address string names

Use Encoded Sequences for the ‘CS Internal Names’

This helps to
- Make the Address strings comprehensible to non-Insiders
- Keep the namespaces distinct

Conventions, (some) Examples

hostname : dns hostname or alias, lower case [accxpl2seki, mskvxw01]
may refer to group, facility, OS, functionality

fecname: encoded, UPPER case [L2SEKI , PECOOL]
includes facility, indication of functionality

tagname: (traditionally e.g. XXXMOD, BPMMOD, CURMOD)

Device Server Name: word(s), UPPER case (?), does not include Facility
old ‘HPCUR’ => ‘CURRENT’

Device Instance Name: Camel case (but NL130, not Nl130)
words / sequence mix depends on system!
often includes device ‘location’ (more later)

Device Property: word(s), Camel case
don’t use ‘setXyz’ / ‘getXyz’ (‘Xyz’ is RD, WR, or RD|WR)

III. Depiction of Accelerator Structure

Accelerator vs. Control System Structure
/CONTEXT / DEVICESERVER / DEVICE / PROPERTY

CONTEXT = “FACILITY” , HERA, PETRA, FLASH, etc , ok

(“FACILITY.EXTENSION” mostly for CS ‘special features’)

DEVICESERVER is intrinsically a Control System Structure => ??

Sometimes mapping is simple:

DEVICETYPE/DeviceInstance (BPM / MX.WL030 …)

DEVICE(TYPE)/Location (DOOCS terminology)

But there are all sorts of situations for which this doesn’t fit so easily

Accelerator Structure [2]

• Single Device per Device Server
• Many different device types per fec or host (e.g. 1 of each)
• DeviceType devices spread over many servers
• Group of similar devices with non-identical properties

A more general problem is ‘Assemblies’ , i.e. how do we
depict a multiple level hierarchy involving components on
multiple servers when only a single level within our Address string is

available, ie Context/DeviceType/DeviceInstance

(In some sense sorting the system by groups of ‘DeviceType’
corresponds to a procedural rather than an OO view of the system)

Assemblies [1]
Example from FLASH (DOOCS, see jDTool (web start address on DOOCS site))

TTF2.MAGNETS / DeviceType / DeviceInstance (‘location’)
QUAD / Q2UBC2
QUAD.PILO / Q2UBC2
QUAD.MOVER / Q2UBC2
QUAD.DB / Q2UBC2

⇒ QUAD devices are composed of systems sitting on multiple servers

- Requires coordination of naming on different server types (GOOD!!)

- In this case, QUAD (but not QUAD.PILO) is a virtual device server created by
redirection of servers on 11 hosts, each of which supports a mixture of quads, dipoles,
etc..

- “TTF2.MAGNETS” = “FACILITY.SUBSYSTEM” is DOOCS notation, non-supported
usage for TINE.

- A possibility for TINE is “FACILITY/SUBSYSTEM.DEVICETYPE”, for example
as above, “PETRA/VAC.ION_PUMP/..” . [No mcs1 decision on this yet?]

Assemblies [2]
Another example from FLASH (DOOCS)

TTF2.RF/ ‘DeviceType’ / DeviceInstance (‘location’)
KLY.DIO / KLY2
KLY.ADC / KLY2
KLY.INTERLOCK / KLY2
KLY.CONTROL / KLY2
KLY.PLC / KLY2

- This is (I think) implemented very differently from the magnet case, namely each
klystron has its own process (~fec), which supports a dio, adc, plc, etc, and there
are multiple instances of the process. I.e many different devices in one process.

- But the same notation is used to show the Assembly structure

Recommendation: Use “.” separator to create ‘Assemblies’ or
show hierarchy within DeviceType (and Properties !!)

Recommendation: Coordinate Device Type and Instance names across servers
to support Assembly views of components.

[Corollary] : All Device Instance names should use the same system for
describing position within the accelerator!! (Petra3: in progress)

‘Parallel’ Servers
Example from HERA: Transient Recorders, SPS for QUENCH system in the Hera Halls
/HERA/ WESTTR, NORDTR, OSTTR, SUEDTR , ie same Device Types per server

How might we do this differently now?

/HERA/QUENCH.TRANSREC-W/
/HERA/QUENCH.TRANSREC-N/
/HERA/QUENCH.SPS-W/ [SPS-W]
/HERA/QUENCH.SPS-N/ [SPS-N]

TINE Redirection (optional) could then result in virtual servers
QUENCH.TRANSREC/ TREC-W, TREC-N …
QUENCH.SPS/ SPS-W, SPS-N …

Recommendation: use hypenated extension to differentiate parallel servers

Recommendation: use Redirection to consolidate parallel servers IF
it results in a significant simplication of the visible namespace
(there is also a price in complexity and possible confusion)

Conclusions

- Using TINE (or DOOCS) Servers does not in itself give any guarantee that
the resulting CS name structure is coherent or human readable.

- TINE (and DOOCS) naming does not naturally mirror the accelerator
structure. A mixture of naming conventions and ‘tricks’ is necessary to
produce a useable result. The ‘tricks’ make the internal structure of the
system more complicated, so there are trade-offs in how far they are used.

- Coordination of conventions and name usage both within and between groups
is essential. This of course requires published guidelines, many examples,
AND extensive consultation between the groups.

- What’s Needed !?
-- Published guidelines and examples from MCS1
-- Decisions, e.g. “Include Subsystem, as VAC.ION_PUMP : yes, no maybe?”
-- Consultation / Review mechanisms?

Addendum: a wee bit of advice

• DOOCS/FLASH people have devoted significant effort to developing
naming which reflects a view of the accelerator.

• The jDTool shows tree diagrams of the system hierarchies. Use it to look at
their solutions for some of these issues

http://ttfinfo.desy.de/ttf_apps/jClients/jDTool.jnlp

• If there is a FLASH solution parallel to your needs, and it is not a worse fit
than other alternatives, consider adopting it!

• FLASH and PETRA will be operated from the same control room by the
same operations staff. It is foolish not to exploit commonalities

http://ttfinfo.desy.de/ttf_apps/jClients/jDTool.jnlp

	 A Jungle Guide to�TINE Naming:
	Goals for TINE (&DOOCS) CS Naming
	Summary of Presentation
	I. Tine Naming Primer
	‘fec’ vs. ‘equipment module’ [1]
	‘fec’ vs. ‘equipment module’ [2]
	II. Orthographic Rules and Conventions
	Orthographic Rules and Conventions [2]
	Conventions, (some) Examples
	III. Depiction of Accelerator Structure
	Accelerator Structure [2]
	Assemblies [1]
	Assemblies [2]
	‘Parallel’ Servers
	Conclusions
	Addendum: a wee bit of advice

