

TINE + Windows CE

Andres Pazos EMBL-Hamburg

Present:

- Libraries compiled for windows CE 5.0 (works with CE 6.0)
 - tine32
 - Cdi32, TwinCATads, SedPCSimulate
- Simple tests in a embedded x86 machine

- Stress tests
- Compile for more CPU architectures
- Migrate to release 4.0

Two Ideas

Make servers

Example: TINE server running in a Embedded
 PC directly connected to the HW

Make clients

Example: I have mobile access to my servers from my PDA

Multiplatform compilation: windows Desktop and windows CE

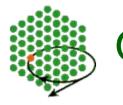
Standard Tools

For Programming

- MS eMbedded Visual: C++ & VB
- MS Visual Studio: C++, VB & C#
 *you need a SDK for each winCE distribution



- Build your own Windows CE distribution (example: only command line without GUI)
- Build your SDK


Emulator

- Advantage: you simulate your hardware
- Disadvantage: Networking not straight forward

ActiveSync

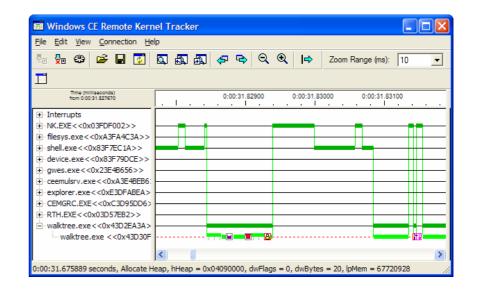
Other Tools

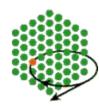
Write Java programs for winCE

– ewe Java Virtual Machine

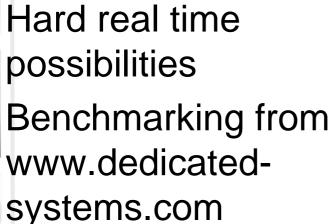
 Sun PersonalJava migrates to Java2 MicroEdition (J2ME)

– Waba & SuperWaba




- **PythonCE**
- From Linux
 - Possible to link GCC with winCE libraries

Remote tools


- 4
- Kernel tracker
- Heap walker
- Call profiler
- Registry editor
- Process viewer
- Performance monitor
- Spy client
 - File viewer

Coming back to RTOS topic

Interrupt period	#interrupts generated	#interrupts serviced	#interrupts lost
20 µs	100 000	99 972	28
23 µs	100 000	99 997	3
25 µs	100 000	100 000	0
28 µs	100 000	100 000	0
26 µs	100 000 000	99 999 999	1
28 µs	100 000 000	100 000 000	0
30 µs	100 000 000	100 000 000	0
27 μs	1 000 000 000	1 000 000 000	0

