
TINE Release 4.0 News
(May 6, 2011: That was the month that was !)

“What a long, strange trip it‟s been ….”

Release 4.2.3

 Improvements in version 4.2.3
 Performance Adjustment routines

 Exotic concurrency problem and race
condition fixed !

 MatLab API improvements !

 .NET news

Release 4.2.3

 Bug Fixes (C-Lib)

 Client Side Links using CA_NETWORK AND
CA_SYNCNOTIFY
 Multi-threaded builds could land in a „race-condition‟

causing a „double callback‟ (thank you, Stefan!)

 Initial bug fix (May 23) effectively considered
CA_NETWORK OR CA_SYNCNOTIFY, causing
„missed updates‟ (thank you, Kai Brede!)

 Server Side deadlock if a TCP client closes
ungracefully
 i.e. a TCP connection calling CloseLink() and „halting‟

without any „cycle activity‟.

Release 4.2.3

 Bug Fixes (java)
 A notification problem with „DATACHANGE‟

Links following a server restart was fixed
(thank you, Elke).

 A „race-condition‟ which develops with
TLink.execute() in a tight loop was fixed
(thank you, David).

 A data update problem (server side) for large
payloads when the first MTU‟s worth of data
does not change was fixed. (thank you,
Juergen).

Release 4.2.3

 Embellishments (C-Lib)
 Routines Get/SetTransportRetryLimit() now

available
 Default = 2 is too large in some (extreme)

scenarios (especially with TCP connections).

 Routine SetSystemCleanupFunction() now
available
 Prototype: (void)(*fcn)(void);

 Called as a last step during a „quit‟ or „exit‟.

 Note: pure client applications had no chance to
register a cleanup routine!

Release 4.2.3

 Embellishments (java)

 TLink.execute() methods with

„retryOnTimeout‟ parameter now use a

„hard‟ timeout when

 retryOnTimeout = false.

 Call returns „TErrorList.connection_timeout‟

when given timeout interval expires (no

„grace period‟, no hidden retries).

Release 4.2.3

Example:

Some clock Tick

granularity, but very

close to „100 msec‟ !

MatLab News

 New routines:
 tine_eventdata(), tine_eventlist(),

tine_eventservers(), tine_eventtriggers(),
tine_eventproperties(), tine_eventcomment()

 tine_history()

 tine_read(), tine_write(), tine_writeread(), tine_call()

 tine_callback.m

 tine_debug

 Will be documented soon!

 Legacy routines: tineread(), tinewrite(),
tinewriteread() still work fine.

From Last Time …

http://tine.desy.de -> MatLab API

http://tine.desy.de/

MatLab News …

Documentation galore !

MatLab News

 Planned:
 Write clients in MatLab with link callbacks

(instead of polling)
 Note:

 asynchronous listeners already reduce burden on the
server!

 but the MatLab client must still poll locally !

 Write servers in MatLab with the „buffered
server‟ API (a la LabView)
 tine_attachserver() OR tine_registerServer(),

tine_registerProperty(), etc.

 tine_pushdata()

 tine_handleCommand()

From Last Time …

Mission Accomplished !

MatLab News

 Client Side

 tine_read

 tine_write

 tine_writeread

 tine_call

 tine_attachlink

 tine_closelink

Takes callback ID and

function as arguments !

Closes a „known‟

listening link !

Can make use of

many more TINE Data

types as well as

Tagged Structures !

MatLab News (reading structs)

Can „specify‟ the

structure if known

as well as the data

size

Or just let the call

„figure it out‟

MatLab News (writing structs)

Prepare the input

structure prior to call

Or: Let the call figure

out the structure tag

name …

MatLab News

 Browsing
 tine_contexts

 tine_servers

 tine_devices

 tine_properties

Example (tine_devices):

some optional arguments are

sometimes important!

MatLab News

 Archive Calls

 tine_history

 tine_eventdata

 tine_eventtriggers

 tine_eventproperties

 tine_eventservers

 tine_eventlist

 tine_eventcomment

MatLab News

 Server API

 tine_attach_server

 tine_push_data

 tine_attach_handler

 tine_register_fec

 tine_register_server

 tine_register_device

 tine_register_property

 tine_register_type (fuer TINE Structures)

Or use configuration files

Initialization and Startup

Supplying data and

reacting to commands

MatLab News

MatLab server using configuration files …

Supply a property and

device with data

Register dispatch

handlers for settings

changes

Start a background

task

Attach to database via

equipment module

“SINEQM”

MatLab News
MatLab server without configuration files …

Supply all relevant

information directly in

MatLab code

MatLab News

MatLab Sine Server: updating the Sine curve :

MatLab Sine Server: reacting to an amplitude setting change :

MatLab News

MatLab Sine Server: registering a structure :

Will use the structure tag

„MlabInf‟ in this example

Now register a property to use this new „type‟:

„push‟ data when you need to :

A property dispatch handler will also see an incoming structure

(for atomic changes) !

MatLab News

 MatLab „mex‟ routines tested on

 Win32

 Win64

 (but the Terminal Servers seem to have a

firewall issue with servers)

 Linux32

 Linux64

.NET News

 Bug fix in TDataType.putData() when

passing a scalar by value

 New server registration routines

 More integrated documentation

 API coming soon to the Web Site

doocs-tine issues

 jddd and ddd like to rely on device name and property to
simply return relevant data
 Good idea for panel/widget programing

 e.g.
 a rich client would say give me 1 float value for

/PETRA/BPM/BPM_SWR_13[Orbit.X]

 a panel client would say give me the data for
/PETRA/BPM/BPM_SWR_13[Orbit.X]

 But
 A tine contract will always specify a data type and a data size!

 Solutions:
 1) 1st query the property to see what it delivers, then do that!

 2) specify a buffer capacity (in bytes) and data type CF_DEFAULT

 Solution 2) involves no extra traffic and is preferred.

 Problem: if buffer capacity is not sufficient the call receives
„buffer_too_small‟
 C-Lib handles this (default capacity = 64 bytes) !

 Java does not (as yet)! (default capacity was 64 Kbytes) !

doocs-tine issues
Reacting to „buffer_too_small‟ in java:

Much too small for a

sine curve (8 K floats)

Possible callback strategy :

Will re-attach with

the „correct‟

parameters !

doocs-tine issues

 Note: tine needs to allocate a data buffer
(likely 2 buffers) on both the client and
server side to manage contracts and
connections.
 necessary for persistent links

 Common links to same contract, etc.

 Double buffering for „DATACHANGE‟, etc.

 Different from a SunRPC transaction
which goes out of memory when it
completes.

doocs-tine issues

 Potential points of confusion and inefficiencies
when using CF_DEFAULT:
 A tine property can be overloaded !

 e.g. deliver a timestamp as UTC long int or as a
string

 e.g. deliver different structures

 => CF_DEFAULT gives only the „preferred‟ data type
and size.

 the default size could be much larger than
necessary!
 wasteful of main memory for a monitored link !

 These points are currently being addressed!

doocs-tine issues

 Security

 tine uses „user name‟ and/or network address
 at the server level

 at the property level

 at the device level

 (Can also use „access locks‟ -> application level).

 doocs uses gid + uid
 at the server level

 at the property level

 at the device level

 pid ?

doocs-tine issues

 Security

 tine-to-doocs via tine
 tine security turned off

 tries to map user name into gid/uid

 Problems:
 A (middle-layer) FEC always uses its FEC name as

the user name (regardless of the logged in user).
 Note: this strategy sometimes has tremendous advantages!

 Workaround:
 SetUser(“DOOCSADM”);

 Make the call

 SetUser(FEC NAME);

