Tip of the Month :

 How to use the Local and Central
Archive/History Servers

TINE Archive Data

(a short review)

m Central Archive Server
o Trends of ‘registered’ machine data stored centrally
o Always on line (never removed or ‘compressed’)
o ‘Filtered’ (remove as much of the ‘haystack’ from the ‘needles’ as possible)
O

Ke”ep ‘Points of Interest’ to ensure the ‘peaks’ and ‘valleys’ appear in archive
calls

O Local History Subsystem
Trends of ‘registered’ propertles stored Iocally at the server
o Short-term depth provides a ‘ring-buffer’ size
= Data stored at archive polling interval
® Long-term depth specifies storage range
= Can also maintain a minimum disk space
= ‘Filtered’ by tolerances only
@ Keep ‘Points of Interest’

s Event (Post-mortem) Archives
o Eventtriggers

= Acquire and save according to trigger script.
= Annotated (automatically + user comments)

Local History Data (notes)

= Configured via file
o ‘history.csv’ or ‘fec.xml
= Configured via API
o See: AppendHistorylnformation() (C-Lib)
or: TEquipmentModule.addLocalHistoryRecord() (java)

= By default:
o Use ‘sequential history files
= Appended

= Fragmented (especially NTFS)
= Can specify ‘standard’ files

o Use Random-access history files
m Pre-allocated ‘worst-case’ files
= Rotated (round-robin style)

o Command line utility ‘mkhstfiles’ will create the ‘standard’ history
file set.

o BIG performance improvement in accessing local history data
(especially on NTFS)

Accessing Archive Data

m Systematic details (meta properties)
o <property>.HIST (or <property>.HST)

» Returns:

O

O

| bet you didn’t
know this !

Array of value-timestamp doublets (e.g. FLTINT, DBLDBL)
= Normally: status != 0 does not get stored !

Array of INTFLTINT (doocs alias TDS) (i.e. timestamp-
value-status)

m If stored as e.g. FLTINT (value-status) then a status
value can be supplied

Array of CF_HISTORY types !
m Used systematically (not for ordinary users!)
m Can carry any other data type !

Number of points in interval: if requested output is a single
number type !

Accessing Archive Data
via CF_HISTORY

C-Lib: GetArchiveDataAsAny()

int GetArchivedDataAsany { char * devsry,
time_t start,
time_t stop,
HstHdr * dataHdr,
BYTE * data,

int dataFmt,
char * dataTaag,
int * num

Retrieves archive data as requested in the call,
This call retrieves archive data from the archiver requested in the call. This call retrieves an archived data set according to the data format given.

Parameters:

gevsry [in] must be the keyword-appended full device server name for which the archive data is desired.

start [in] is the start time input (expressed as a UNIX timestamp) for which the archive data are desired.

stop [in] is the end time input (expressed as a UNIX timestamp) for which the archive data are desired,

datardr [out] is a pointer to an array to hold the history header information, This is an array of HstHdr objects containing a TIME timestamp (UTC double), a
system data stamp (22-bit integer) and the user data stamp (32-bit integer) in one-to-one correspondence with the data array returned.

data [out] is a pointer to an array of data ohjects to receive the archive data, This should an array of the desired data format (and large enough to hold
the requested data).

datafmit [in] is the TIME data format code of the requested data, If this doesn't match the stored format, an attempt will be made to reformat the data,
However this will not always be possible and could lead to an error,

dataTag [in] is the TIME tagged structure tag to be used if the stored data is a TIME tagged structure. If the stored data is not a structure, this parameter is
ignored.

num [infout] is a pointer to an integer giving {as input) the size of the data buffer which is to receive the archive data, and {as ouput) which contains the
amount of archive data actually returned by the call,

Returns:
0 if successful, otherwise a TINE completion code which can be interpreted by a call to GetLastLinkError().

See also:
GetArchivedDataAsFloat(), GetArchivedData(), GetArchivedDataAsText()

References DTYPE::dArrayLength, DTYPE::data, DTYPE::dFormat, DTYPE::dTag, ExecLinkEx(), DUNION: :ulptr, and DUNION:: vptr,

Accessing Archive Data
(via CF_HISTORY)

Java: Thistory.getArchivedData()

double stpt = | (double] System.currentTimeMillis()) / 1000;
double srtt = stpt - 24 * 60 * 60;
HISTORY[] hstarr = new HISZTORY[100]
for (int i=0; i<100; i++)
1
hetarr[i] = new HIZTORY (new TDataTvpe (new FLTINT[1]1]:
K
int npts = THistory.getArchivedDatz("PETREL", "VAZ.T3P","TestFloat™,"30LZ1.3",
QO,srtt, stpt, hstarr,500);
ThataType rdt;
HISTORY h:
for (int i=0; i<npt=s; i++)
1
h = hstarr[i]:
rdt = h.getDataChject (] :
System. out.print ("Y"4rdo.gethataTimeltamwp (] + " @ "+ rdto.to3tringi()):;

Accessing Archive Data

= Meta Property Input:

o No input =>
m Sstop = now
= start determined by output data size

o Up to 4 parameters:
m starttime (UTC) (default: given by output size)
m stop time (UTC) (default: now)
m array index (e.g. trace or spectrum array) (default: 0)
n

sampling raster (default: 0 => determined by output
size and time range)

Accessing Archive Data

= ‘normal viewing':. what do the archive
viewers do?

o THistory.getArchiveData() calls
= Take a dimensioned array as output argument
O determines requested output size (typically 2000)

= Query ‘'number of points’ from 2 sources (local
and central archive)

O Use source with fewest points > 500
= Display and use ‘optical zooming’
O Any zoom reacquires data for new time range

Accessing Archive Data

What if | want ALL data over a range?
o Method #1.

send a sampling raster = 1

data buffer full => start again with timestamp
of last buffer entry + 1

o Method #2 :

first ask for number of points

then provide a buffer big enough and make a
single call.

Accessing Archive Data

m Snapshots (details)
o <property>.HIST@ (or <property>.HST@)

= Returns the record (value or array set) at the

specified timestamp.

O i.e. nearest time equal to or more recent than
requested time.

= Returned timestamp is the timestamp of the
data retrieved.

Accessing Archive Data

= How to display ‘movies’

O

Useful when the archive record is an array
(either multi-channel or spectrum)

Method #1

m get atrend over a time range (index = 0 or first device)
O provides the timestamps of the stored data !

m acquire and display snapshots at those timestamps

Method #2

= Start at beginning and acquire first snapshot
m Use data timestamp + 1 to acquire next snapshot
= Repeat until stop time is reached

[Accessing Archive Data

Related Meta Properties:
o <property>.ARCH (or .ARC or .AR)
o <property>. ARCH@
Redirects call to central archiver !
Tips:
o Try to avoid using the meta-properties
yourself !

o Use the utility routines
C-Lib: GetArchivedData() routines
Java: THistory.getArchivedData() methods

