
Tip of the Month :

• How to use the Local and Central

Archive/History Servers

TINE Archive Data
(a short review)

 Central Archive Server
 Trends of ‘registered’ machine data stored centrally
 Always on line (never removed or ‘compressed’)
 ‘Filtered’ (remove as much of the ‘haystack’ from the ‘needles’ as possible)
 Keep ‘Points of Interest’ to ensure the ‘peaks’ and ‘valleys’ appear in archive

calls

 Local History Subsystem
 Trends of ‘registered’ properties stored locally at the server
 Short-term depth provides a ‘ring-buffer’ size

 Data stored at archive polling interval
 Long-term depth specifies storage range

 Can also maintain a minimum disk space
 ‘Filtered’ by tolerances only

 Keep ‘Points of Interest’

 Event (Post-mortem) Archives
 Event triggers

 Acquire and save according to trigger script.
 Annotated (automatically + user comments)

Local History Data (notes)

 Configured via file
 ‘history.csv’ or ‘fec.xml’

 Configured via API
 See: AppendHistoryInformation() (C-Lib)

 or: TEquipmentModule.addLocalHistoryRecord() (java)

 By default:
 Use ‘sequential’ history files

 Appended

 Fragmented (especially NTFS)

 Can specify ‘standard’ files
 Use Random-access history files

 Pre-allocated ‘worst-case’ files

 Rotated (round-robin style)

 Command line utility ‘mkhstfiles’ will create the ‘standard’ history
file set.

 BIG performance improvement in accessing local history data
(especially on NTFS)

Accessing Archive Data

 Systematic details (meta properties)
 <property>.HIST (or <property>.HST)

 Returns:
 Array of value-timestamp doublets (e.g. FLTINT, DBLDBL)

 Normally: status != 0 does not get stored !

 Array of INTFLTINT (doocs alias TDS) (i.e. timestamp-
value-status)

 If stored as e.g. FLTINT (value-status) then a status
value can be supplied

 Array of CF_HISTORY types !

 Used systematically (not for ordinary users!)

 Can carry any other data type !

 Number of points in interval: if requested output is a single
number type !

I bet you didn’t

know this !

Accessing Archive Data
(via CF_HISTORY)

 C-Lib: GetArchiveDataAsAny()

Accessing Archive Data
(via CF_HISTORY)

 Java: Thistory.getArchivedData()

Accessing Archive Data

 Meta Property Input:

 No input =>
 stop = now

 start determined by output data size

 Up to 4 parameters:
 start time (UTC) (default: given by output size)

 stop time (UTC) (default: now)

 array index (e.g. trace or spectrum array) (default: 0)

 sampling raster (default: 0 => determined by output
size and time range)

Accessing Archive Data

 ‘normal viewing’: what do the archive

viewers do?

 THistory.getArchiveData() calls

 Take a dimensioned array as output argument

 determines requested output size (typically 2000)

 Query ‘number of points’ from 2 sources (local

and central archive)

 Use source with fewest points > 500

 Display and use ‘optical zooming’

 Any zoom reacquires data for new time range

Accessing Archive Data

 What if I want ALL data over a range?

 Method #1:

 send a sampling raster = 1

 data buffer full => start again with timestamp

of last buffer entry + 1

 Method #2 :

 first ask for number of points

 then provide a buffer big enough and make a

single call.

Accessing Archive Data

 Snapshots (details)

 <property>.HIST@ (or <property>.HST@)

 Returns the record (value or array set) at the

specified timestamp.

 i.e. nearest time equal to or more recent than

requested time.

 Returned timestamp is the timestamp of the

data retrieved.

Accessing Archive Data

 How to display ‘movies’

 Useful when the archive record is an array
(either multi-channel or spectrum)

 Method #1
 get a trend over a time range (index = 0 or first device)

 provides the timestamps of the stored data !

 acquire and display snapshots at those timestamps

 Method #2
 Start at beginning and acquire first snapshot

 Use data timestamp + 1 to acquire next snapshot

 Repeat until stop time is reached

Accessing Archive Data

 Related Meta Properties:
 <property>.ARCH (or .ARC or .AR)

 <property>.ARCH@
 Redirects call to central archiver !

 Tips:
 Try to avoid using the meta-properties

yourself !

 Use the utility routines
 C-Lib: GetArchivedData() routines

 Java: THistory.getArchivedData() methods

