
Tip of the Month :

• How to use the Local and Central

Archive/History Servers

TINE Archive Data
(a short review)

 Central Archive Server
 Trends of ‘registered’ machine data stored centrally
 Always on line (never removed or ‘compressed’)
 ‘Filtered’ (remove as much of the ‘haystack’ from the ‘needles’ as possible)
 Keep ‘Points of Interest’ to ensure the ‘peaks’ and ‘valleys’ appear in archive

calls

 Local History Subsystem
 Trends of ‘registered’ properties stored locally at the server
 Short-term depth provides a ‘ring-buffer’ size

 Data stored at archive polling interval
 Long-term depth specifies storage range

 Can also maintain a minimum disk space
 ‘Filtered’ by tolerances only

 Keep ‘Points of Interest’

 Event (Post-mortem) Archives
 Event triggers

 Acquire and save according to trigger script.
 Annotated (automatically + user comments)

Local History Data (notes)

 Configured via file
 ‘history.csv’ or ‘fec.xml’

 Configured via API
 See: AppendHistoryInformation() (C-Lib)

 or: TEquipmentModule.addLocalHistoryRecord() (java)

 By default:
 Use ‘sequential’ history files

 Appended

 Fragmented (especially NTFS)

 Can specify ‘standard’ files
 Use Random-access history files

 Pre-allocated ‘worst-case’ files

 Rotated (round-robin style)

 Command line utility ‘mkhstfiles’ will create the ‘standard’ history
file set.

 BIG performance improvement in accessing local history data
(especially on NTFS)

Accessing Archive Data

 Systematic details (meta properties)
 <property>.HIST (or <property>.HST)

 Returns:
 Array of value-timestamp doublets (e.g. FLTINT, DBLDBL)

 Normally: status != 0 does not get stored !

 Array of INTFLTINT (doocs alias TDS) (i.e. timestamp-
value-status)

 If stored as e.g. FLTINT (value-status) then a status
value can be supplied

 Array of CF_HISTORY types !

 Used systematically (not for ordinary users!)

 Can carry any other data type !

 Number of points in interval: if requested output is a single
number type !

I bet you didn’t

know this !

Accessing Archive Data
(via CF_HISTORY)

 C-Lib: GetArchiveDataAsAny()

Accessing Archive Data
(via CF_HISTORY)

 Java: Thistory.getArchivedData()

Accessing Archive Data

 Meta Property Input:

 No input =>
 stop = now

 start determined by output data size

 Up to 4 parameters:
 start time (UTC) (default: given by output size)

 stop time (UTC) (default: now)

 array index (e.g. trace or spectrum array) (default: 0)

 sampling raster (default: 0 => determined by output
size and time range)

Accessing Archive Data

 ‘normal viewing’: what do the archive

viewers do?

 THistory.getArchiveData() calls

 Take a dimensioned array as output argument

 determines requested output size (typically 2000)

 Query ‘number of points’ from 2 sources (local

and central archive)

 Use source with fewest points > 500

 Display and use ‘optical zooming’

 Any zoom reacquires data for new time range

Accessing Archive Data

 What if I want ALL data over a range?

 Method #1:

 send a sampling raster = 1

 data buffer full => start again with timestamp

of last buffer entry + 1

 Method #2 :

 first ask for number of points

 then provide a buffer big enough and make a

single call.

Accessing Archive Data

 Snapshots (details)

 <property>.HIST@ (or <property>.HST@)

 Returns the record (value or array set) at the

specified timestamp.

 i.e. nearest time equal to or more recent than

requested time.

 Returned timestamp is the timestamp of the

data retrieved.

Accessing Archive Data

 How to display ‘movies’

 Useful when the archive record is an array
(either multi-channel or spectrum)

 Method #1
 get a trend over a time range (index = 0 or first device)

 provides the timestamps of the stored data !

 acquire and display snapshots at those timestamps

 Method #2
 Start at beginning and acquire first snapshot

 Use data timestamp + 1 to acquire next snapshot

 Repeat until stop time is reached

Accessing Archive Data

 Related Meta Properties:
 <property>.ARCH (or .ARC or .AR)

 <property>.ARCH@
 Redirects call to central archiver !

 Tips:
 Try to avoid using the meta-properties

yourself !

 Use the utility routines
 C-Lib: GetArchivedData() routines

 Java: THistory.getArchivedData() methods

