
TINE Release 4.x.x News
(June 8, 2015: That was the month that was !)

“What a long, strange trip it’s been ….”

Release 4.5.5

 Noteworthy Bug-fixes (C-Library)

 The ‘attachfec’ bug …

 The ‘tcp single byte’ bug …

 Noteworthy Bug-fixes (java)

 Local history ‘isWithinTolerance’ +

CF_NAMExx bug …

 The CF_DEFAULT -> CF_TEXT issue …

Release 4.5.5

 The ‘attachfec’ bug :

 Using attachfec to remotely attach to a

multi-threaded (C-Lib) server leads to

server hang-up when session is closed.

 Introduced ver. 4.5.1 (build id 5129), 10.12.14

 Fixed ver. 4.5.3 (build id 5134), 20.1.15

Release 4.5.5

 The TCP Single-Byte Bug :

 If TCP Stream delivers only the initial

byte of new packet chunk it led to an

apparent data stream corruption.

 Large payloads, very busy network

 Fixed ver. 4.5.3 (build id 5135)

Release 4.5.5

 ‘IsWithinTolerance’ + CF_NAMExx bug:

 Was throwing an exception.

 Fixed 19.5.15

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …
 Returned data header gives data type and

size returned!

 jdoocs: starts a link with CF_DEFAULT,
buffer size = 128 bytes.

 Learns that date type = CF_TEXT, but only
sees n characters of a property registered to
deliver N.
 e.g. receives only 10 of 80 characters.

 jdoocs thinks that the property delivers 10
elements of type CF_TEXT !

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …

 Any change in the data where > 10
characters is returned gets truncated !
 e.g. doocs servers do just this !

 property registered to return 80 chars only needs
to return 10 so it does.

 1st solution: if CF_DEFAULT -> CF_TEXT did
not return buffer_too_small then 128 was OK
-> use size = 128.
 jddd caches this learned size for future use!

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …

 doocs servers allow requested length >
registered length (great!).

 Java Server wizard servers don’t! (oops!)
 But they always return the registered number of

characters (filled with ‘0’s).

 1st solution following jddd cached information
and a ‘re-attach’ to a java server-wizard server
lead to dimension_error !

 Best strategy: if CF_TEXT then acquire the
registered property information explicitly !

Release 4.5.5

 Embellishments …

 Can now set/get

‘use cycle trigger’

at any time.

 Can now set/get

‘server time

synchronization’ at

any time.

Release 4.5.5

 Embellishments :

 Get relevant

environment

variable settings:

Release 4.5.5

 Java Servers:

 Stock property ‘SRVEXIT’ now behaves

as per the C-Lib Server:

 Waits several cycles before calling

System.exit().

 Caller gets an explicit success when the call

succeeds (instead of link_timeout).

Release 4.5.5

 Java Servers:

 The issue: jddd panels love history
displays !
 Tend to make repeated history calls.

 Trend chart with appends ‘live data’ for several
seconds then ‘repeats’ the history call.

 Local history files on windows:
 NTFS horribly fragmented.

 Suggestion: use ‘standard history files’
(mkhstfiles utility) + contig.exe.

Release 4.5.5

 Java Servers:

 Java servers on windows: big endian on

little endian.

 A scan thru a large multi-channel array

record involves a lot of ‘readFloat()s’ and/or

byte swapping.

 Two strikes against it (fragmentation + C-

Lib file i/o is much more efficient than

java for multi-channel record read-outs)

Release 4.5.5

 Java Servers:

 CPU load goes high in a hurry when jddd

is connected to a java server and opens

up a history panel !

 Watchdog was happy with ‘max cpu = 20%’ is

now no longer happy!

Release 4.5.5

 Java Server tweaks …

 Some problems fixed concerning

‘standard’ non-fragmented files.

 No longer scan and read the entire

record if the history of a single channel is

requested !

Release 4.5.5

 Java Client Side:

 Presenting the new data –access layer

(AKA: “The Layer”).

 The issue:

 Multiple access of connection endpoints.

 Consider rich-client programming …

Release 4.5.5 - the Layer

 Rich Client pseudo code:
 Some value is known globally ….

Release 4.5.5 - the Layer

 Java Client Side:

 Consider panel-client programming …

 There is no variable theValue but someone

has browsed their way to

/PETRA/Mag.Corr-NO/PKDK_NOL_86[Strom.Ist]

 on 10 different ‘widgets’ in a GUI designer.

 Some of these widgets want the value once,

some want to monitor on change, some want

to monitor fast, some want to monitor slow,

etc.

Release 4.5.5 - the Layer

 Java Client Side:
 tine has a layer (there’s only ever one link,

client-server, to an endpoint), but it is deep
(there is a lot of ‘last-minute’ checking).

 An end-point might require extra ‘learning’.
 Is it redirected? -> if so where to?

 Is it a single element of a multi-channel array? ->
if so which one?

 Is this one of those CF_DEFAULT things?

 And start all the widgets off simultaneously
each in his own thread !

Release 4.5.5 - the Layer

 Java Client Side:

 Layer design:

 Write calls feed through.

 Read calls to static Stock Properties feed

through.

 All other read calls start by accessing the layer.

 Everyone starts a monitor (even the single shots)

 If single ‘gets’ stop being issued, then an idle time

expires and monitor is closed.

Release 4.5.5 - the Layer

 Java Client Side:

 Layer design:
 Layer is shallow. The endpoint specifications

are ‘hashed’.
 No match -> start a new endpoint monitor.

 Is match? attach to the monitor

 Manage individual widget specifications in the
layer.

 Adjust timer intervals as required, etc.

 Reflect and keep theValue at the client side and
make all the widgets get the reflected value !

Release 4.5.5 - the Layer

 Demo example …

Release 4.5.5 - the Layer

 Demo example …

