
TINE Release 4.x.x News
(June 8, 2015: That was the month that was !)

“What a long, strange trip it’s been ….”

Release 4.5.5

 Noteworthy Bug-fixes (C-Library)

 The ‘attachfec’ bug …

 The ‘tcp single byte’ bug …

 Noteworthy Bug-fixes (java)

 Local history ‘isWithinTolerance’ +

CF_NAMExx bug …

 The CF_DEFAULT -> CF_TEXT issue …

Release 4.5.5

 The ‘attachfec’ bug :

 Using attachfec to remotely attach to a

multi-threaded (C-Lib) server leads to

server hang-up when session is closed.

 Introduced ver. 4.5.1 (build id 5129), 10.12.14

 Fixed ver. 4.5.3 (build id 5134), 20.1.15

Release 4.5.5

 The TCP Single-Byte Bug :

 If TCP Stream delivers only the initial

byte of new packet chunk it led to an

apparent data stream corruption.

 Large payloads, very busy network

 Fixed ver. 4.5.3 (build id 5135)

Release 4.5.5

 ‘IsWithinTolerance’ + CF_NAMExx bug:

 Was throwing an exception.

 Fixed 19.5.15

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …
 Returned data header gives data type and

size returned!

 jdoocs: starts a link with CF_DEFAULT,
buffer size = 128 bytes.

 Learns that date type = CF_TEXT, but only
sees n characters of a property registered to
deliver N.
 e.g. receives only 10 of 80 characters.

 jdoocs thinks that the property delivers 10
elements of type CF_TEXT !

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …

 Any change in the data where > 10
characters is returned gets truncated !
 e.g. doocs servers do just this !

 property registered to return 80 chars only needs
to return 10 so it does.

 1st solution: if CF_DEFAULT -> CF_TEXT did
not return buffer_too_small then 128 was OK
-> use size = 128.
 jddd caches this learned size for future use!

Release 4.5.5

 The CF_DEFAULT -> CF_TEXT issue …

 doocs servers allow requested length >
registered length (great!).

 Java Server wizard servers don’t! (oops!)
 But they always return the registered number of

characters (filled with ‘0’s).

 1st solution following jddd cached information
and a ‘re-attach’ to a java server-wizard server
lead to dimension_error !

 Best strategy: if CF_TEXT then acquire the
registered property information explicitly !

Release 4.5.5

 Embellishments …

 Can now set/get

‘use cycle trigger’

at any time.

 Can now set/get

‘server time

synchronization’ at

any time.

Release 4.5.5

 Embellishments :

 Get relevant

environment

variable settings:

Release 4.5.5

 Java Servers:

 Stock property ‘SRVEXIT’ now behaves

as per the C-Lib Server:

 Waits several cycles before calling

System.exit().

 Caller gets an explicit success when the call

succeeds (instead of link_timeout).

Release 4.5.5

 Java Servers:

 The issue: jddd panels love history
displays !
 Tend to make repeated history calls.

 Trend chart with appends ‘live data’ for several
seconds then ‘repeats’ the history call.

 Local history files on windows:
 NTFS horribly fragmented.

 Suggestion: use ‘standard history files’
(mkhstfiles utility) + contig.exe.

Release 4.5.5

 Java Servers:

 Java servers on windows: big endian on

little endian.

 A scan thru a large multi-channel array

record involves a lot of ‘readFloat()s’ and/or

byte swapping.

 Two strikes against it (fragmentation + C-

Lib file i/o is much more efficient than

java for multi-channel record read-outs)

Release 4.5.5

 Java Servers:

 CPU load goes high in a hurry when jddd

is connected to a java server and opens

up a history panel !

 Watchdog was happy with ‘max cpu = 20%’ is

now no longer happy!

Release 4.5.5

 Java Server tweaks …

 Some problems fixed concerning

‘standard’ non-fragmented files.

 No longer scan and read the entire

record if the history of a single channel is

requested !

Release 4.5.5

 Java Client Side:

 Presenting the new data –access layer

(AKA: “The Layer”).

 The issue:

 Multiple access of connection endpoints.

 Consider rich-client programming …

Release 4.5.5 - the Layer

 Rich Client pseudo code:
 Some value is known globally ….

Release 4.5.5 - the Layer

 Java Client Side:

 Consider panel-client programming …

 There is no variable theValue but someone

has browsed their way to

/PETRA/Mag.Corr-NO/PKDK_NOL_86[Strom.Ist]

 on 10 different ‘widgets’ in a GUI designer.

 Some of these widgets want the value once,

some want to monitor on change, some want

to monitor fast, some want to monitor slow,

etc.

Release 4.5.5 - the Layer

 Java Client Side:
 tine has a layer (there’s only ever one link,

client-server, to an endpoint), but it is deep
(there is a lot of ‘last-minute’ checking).

 An end-point might require extra ‘learning’.
 Is it redirected? -> if so where to?

 Is it a single element of a multi-channel array? ->
if so which one?

 Is this one of those CF_DEFAULT things?

 And start all the widgets off simultaneously
each in his own thread !

Release 4.5.5 - the Layer

 Java Client Side:

 Layer design:

 Write calls feed through.

 Read calls to static Stock Properties feed

through.

 All other read calls start by accessing the layer.

 Everyone starts a monitor (even the single shots)

 If single ‘gets’ stop being issued, then an idle time

expires and monitor is closed.

Release 4.5.5 - the Layer

 Java Client Side:

 Layer design:
 Layer is shallow. The endpoint specifications

are ‘hashed’.
 No match -> start a new endpoint monitor.

 Is match? attach to the monitor

 Manage individual widget specifications in the
layer.

 Adjust timer intervals as required, etc.

 Reflect and keep theValue at the client side and
make all the widgets get the reflected value !

Release 4.5.5 - the Layer

 Demo example …

Release 4.5.5 - the Layer

 Demo example …

