TINE Release 4.x.x News
(June 8, 2015: That was the month that was !)

“What a long, strange trip it's been"

[Release 455

= Noteworthy Bug-fixes (C-Library)
o The ‘attachfec’ bug ...
o The ‘tcp single byte’ bug ...

= Noteworthy Bug-fixes (java)

o Local history ‘isWithinTolerance’ +
CF_NAMEXxx bug ...

o The CF_DEFAULT -> CF_TEXT issue ...

[Release 455]

= The ‘attachfec’ bug :

o Using attachfec to remotely attach to a
multi-threaded (C-Lib) server leads to
server hang-up when session is closed.
= Introduced ver. 4.5.1 (build id 5129), 10.12.14
= Fixed ver. 4.5.3 (build id 5134), 20.1.15

[Release 455

= The TCP Single-Byte Bug :

o If TCP Stream delivers only the initial
byte of new packet chunk it led to an
apparent data stream corruption.

= Large payloads, very busy network

o Fixed ver. 4.5.3 (build id 5135)

[Release 455

‘IsWithinTolerance’ + CF__NAMEXxx bug:

o Was throwing an exception.
o Fixed 19.5.15

[Release 455]

s The CF_DEFAULT -> CF_TEXT issue ...

o Returned data header gives data type and
size returned!

o jdoocs: starts a link with CF_ DEFAULT,
buffer size = 128 bytes.

o Learns that date type = CF_TEXT, but only
sees n characters of a property registered to
deliver N.

= e.g. receives only 10 of 80 characters.

o Jdoocs thinks that the property delivers 10
elements of type CF_TEXT |

[Release 455]

m= The CF_DEFAULT -> CF_TEXT issue ...

o Any change in the data where > 10
characters is returned gets truncated !
= e.g. doocs servers do just this !

m property registered to return 80 chars only needs
to return 10 so it does.

o 1stsolution: if CF DEFAULT -> CF TEXT did
not return buffer too small then 128 was OK
-> use size = 128.

= jddd caches this learned size for future use!

Release 4.5.5

= The CF_DEFAULT -> CF_TEXT issue ...

o doocs servers allow requested length >
registered length (great!).

o Java Server wizard servers don’t! (oops!)

= But they always return the registered number of
characters (filled with ‘0’s).

o 1stsolution following jddd cached information
and a ‘re-attach’ to a java server-wizard server
lead to dimension _error!

= Best strategy: it CF_TEXT then acquire the
registered property information explicitly !

Release 4.5.5

E m b e | I i S h m e n tS C e Zimcshbderm0l - default - 55H Secure Shell E\@

File Edit View Window Help

H &Sl iy &

O C a n n OW Set/g et £1 Quick Connect [Profiles

B a0 % &N

4 L] b get clientidle = TRUE/FALSE - flags the client cycle as idle if TRUE o
use C Cle trl er’ > set probe = N - turns on a time probe for N cycles
> which <addr> - display address information of target (e.g. 'wh
ich EN&')

at any time . ; help - display this list

Extra commands:
=
get cycletrigger
O Can nOW Set/g et =cycle trigger active : TRUE
»Current cycle @ 8798858
»cycle offset @ O

‘server time S

>*Uzing time synchronization : TRUE
L » 9y =Current Data Timestamp O0ffsetc @ 0

synchronization” at |:

set timesync=FAL3E

r3et use time synchronization to @ FALSE

any time. -

FUzing time synchronization : FALSE
=

I S

Connected to rmcslxterm(1 55HZ - aesli8-che - hmac-md5 - no| Blx24 éﬂ

Release 4.5.5

Embellishments :

Get relevant
environment
variable settings:

Simcshdermil - default - 35H Secure Shell
File Edit Wiew Window Help
H S 2 2808 #M S0 % &n
&1 Quick Connect] Prafies

[]fmesa)

>

get enw

*TINE_HOME : setc/tine

>TINE_EN3 : not set
>TINE_STANDALONE : not set
>TINE_CACHE : not set
>TINE_BURSTLIMIT : not set
=TINE_NETWORKADDRESS FESOLUTION : not set
*TINE_UZE_GLOBAL SYNCHRONIZATION : not set
*TINE_UZE_CYCLE_TRIGGER : not set
=TINE_LEGACY MULTICAST : not set
>TINE_TRANIPORT : not set
>TINE_QUEUEDEFTH : not set
>TINE_CYCLE_FEY : not szet
*TINE_3TATE KEY : not set
*TINE_UZE_LOOPEACKE : not set
>TINE_FORCE_SHARED MEMORY : not set
>TINE_MCAST ADDE : not set
>TINE_GCAST ADDE : not set
>TINE_MCAST MASE : not set
>TINE_GCAST MASE : not set
=TINE_RECV_EUFFER_SIZE : not set
*TINE_DEG_PIPE : not set

>TINE_3TART C¥CLER : not set

Connected to mcslterm1

S5H2 - aesliB-che - hmac-mda - o 80x24

Release 4.5.5

m Java Servers:

o Stock property ‘'SRVEXIT now behaves
as per the C-Lib Server:

= Waits several cycles before calling
System.exit().

= Caller gets an explicit success when the call
succeeds (instead of /ink _timeout).

Release 4.5.5

m Java Servers:

o The issue: jddd panels love history
displays !
= Tend to make repeated history calls.

o Trend chart with appends ‘live data’ for several
seconds then ‘repeats’ the history call.

o Local history files on windows:
= NTFS horribly fragmented.

m Suggestion: use ‘standard history files’
(mkhstfiles utility) + contig.exe.

Release 4.5.5

Java Servers:

o Java servers on windows: big endian on
little endian.

A scan thru a large multi-channel array
record involves a lot of ‘readFloat()s’ and/or
byte swapping.
o Two strikes against it (fragmentation + C-
Lib file i/o is much more efficient than
java for multi-channel record read-outs)

[Release 455]

m Java Servers:

o CPU load goes high in a hurry when jddd
IS connected to a java server and opens
up a history panel !

= Watchdog was happy with ‘max cpu = 20%’ is
now no longer happy!

[Release 455

Java Server tweaks ...

o Some problems fixed concerning
‘'standard’ non-fragmented files.

o No longer scan and read the entire
record if the history of a single channel is
requested !

[Release 455

= Java Client Side:

o Presenting the new data —access layer
(AKA: “The Layer”).
o The issue:

= Multiple access of connection endpoints.
= Consider rich-client programming ...

Release 4.5.5 - the Layer

= Rich Client pseudo code:
o Some value is known globally

Tloat theValue = 42;

Haa..

labell.setText{"value = " + theValue);

L

if (theValue <« Limitlow) doSomething();

if (theValue > limitHigh) doSomethingElse();
wheel.setValue(theValue);
trend.append{theValue);

S oetc., etc.

Release 4.5.5 - the Layer

= Java Client Side:

o Consider panel-client programming ...

= There is no variable theValue but someone
has browsed their way to
/PETRA/Mag.Corr-NO/PKDK_NOL._86[Strom.|st]
on 10 different ‘widgets’ in a GUI designer.

= Some of these widgets want the value once,
some want to monitor on change, some want
to monitor fast, some want to monitor slow,

etc.

[Release 4.5.5 -the Layer]

= Java Client Side:

o tine has a layer (there’s only ever one link,
client-server, to an endpoint), but it is deep
(there is a lot of ‘last-minute’ checking).

o An end-point might require extra ‘learning’.
= Is it redirected? -> if so where to?

= Is it a single element of a multi-channel array? ->
if so which one?

= |s this one of those CF_DEFAULT things?

o And start all the widgets off simultaneously
each in his own thread !

Release 4.5.5 - the Layer

= Java Client Side:
o Layer design:

Write calls feed through.

Read calls to static Stock Properties feed
through.

All other read calls start by accessing the layer.

Everyone starts a monitor (even the single shots)

O If single ‘gets’ stop being issued, then an idle time
expires and monitor is closed.

Release 4.5.5 - the Layer

= Java Client Side:

o Layer design:

= Layeris shallow. The endpoint specifications
are ‘hashed’.

O
O
O

O

No match -> start a new endpoint monitor.
Is match? attach to the monitor

Manage individual widget specifications in the
layer.

Adjust timer intervals as required, etc.

Reflect and keep theValue at the client side and
make all the widgets get the reflected value !

Release 4.5.5 - the Layer

Demo example ...

class Demo S

public static vodd main({String[] args) throws ConnecticonException, Exceptien {
ChannelFactory factory = ChannelFactory.getinstance();
5tring address = “/TEST/WinSineServer/SineGend/dmplitude™;
ffmake a channel that periodically receives new walues, using default data type (e.g. double)
Channel channel = factory.getChannel(address,ConnectionMode. POLL,1000,new ChannelCallbackAdapteri){
Dowverride
public void updatevalue(Channel channel) {
double value = (({double[])ichannel.getvalue())[@];
system. owt.println{“Fast channel: " + new Date(({long)channel.getRawvalue). getTimeStamp()*102a) +

1
3 F

ffmake ancther channel that receives new walues with a different frequency
Channel slowChannel = factory.getChannel(address,ConnectionMode, POLL, 10000, new ChannelCallbackAdapter(){
@override
public void updatevalue(Channel channel) {
double value = ((double[])ichannel.getvalue()i[@];
system. owt.println(™sSlow channel: ™ + new Date((longlichannel. getRawvalue(). getTimeStamp(J*¥1802) +
¥
¥

Thread. slesp(5028) ;

ffasynchronously set a new walue
channel.setvalue(5.37);

ffelose the fast channel, to stop receiving events
channel.stop();
Thread. stecp(5088 ;

L S [N T PR D e ——

Release 4.5.5 - the Layer

Demo example ...

ffereate a channel that receives updates when the value changes, request an integer type and 5 different
TFormat format = TFormat.voelwsf [TFormat. OF_INT3Z2));
int size = 5;
Channel eventChannel = factery.getChannel(address,format,size,ConnectionMode. CHANGE 18008, new ChannelCallb
@verride
public woid updatevalue(Channel channel) {
int[] walue = ((int[])channel.getvalue()];
System. out.println(™Event received: " + new Datel(lomg)channel. getRawvalue(). getTimestamp()*122a)

h
13K

Thread. sLeep(2002 ;
ffread the last walue that was received from the server
int[] walue = (int[])eventChannel.getvalue();
System. owt.println{™Last walue: ™ + Arrays.tostring(value));
int[] val = new int[5];
for (int 1 = @; 1 < 5; 1i++)
wal[1i] = walue[i]+1;
eventChannel. setvalue(wal);

Thread. sLeep(2002) ;
eventChannel.stop();

fifsometimes you just want to read a walue once and forget about the connection stuff
double[] synchronouslyReadvalue = (double[])factory.getvalueladdress);

system. owt.println(Arrays. tostring(synchronouslyReadvalue));

flor write the walue

synchronouslyReadYalue[@] = Math. rondon()*1008;

factory. setvaluel address, synchronouslyReadvalue) ;

Thread. sLesp(S202287 ;

