TINE Release 5.x.x News
(June 12, 2019: inching toward perfection ...)

“What a long, strange trip it's been"

Release 5.1.0

m Core team now versed in the deep details ...
o connection tables,
o request/response scenarios
@ contract coercion
o etc. .

= Release 5.0.0 seen to be very stable

o And in a mixed environment as well!
m many Release 4.x.x clients and servers still operating ...

o Some exotica:
m missing/delayed callback with CA_NOCALLBACKS + CM_EVENT update mode.
B occasional unnecessary double sends when client-renewal threshold is in use.
n unnecessary contract synchronization with extremely large payload contracts.
n alarm watch table alarms using property-oriented multi-channel arrays.

= Declare 5.1.0
o Buildid: 5536 (C —library)
o Buildid : 5529 (java - library)

Release 5.1.0

= New Local History Features

O
O

(we should have done this years ago!)

<p>.HIST calls can accept WRITE access

m forces a save of the short-term (main memory) history
data into the saved area.
o the saved area is never removed.
o a form of local event/post-mortem archive

O e.g. a wacky-pulse recognizer sees a strange modulator
pulse and issues a save command.

<p>.HIST calls now accept key-value strings as

Input

= Input sometimes more complicated than simply ‘from —
to’

Release 5.1.0

m <p>.HIST input

FTHNS SIS Iimanniguiugnn 1z avaliauie vid J Ldll LW WIS SLULE P wpesiLy FRAWDFC LED WYILDL O 1Sy UESL TUl WLULPPUL LY S Wl 21y
".HIST" (synonym ".HST") returns the local history for the associated property. This meta property supports server out
call should return an array of values over a time range and therefore needs to return not only values but timestamps. Tt
doublet type capable of containing the onglnal property's format as will as a timestamp (for example CF_FLTINT). Suppc
CF_FLTINT value - timestamp palrs in the simplest variant {convert stored value to float and timestamp to UTC se
> CF_DBLDE‘.L value - timestamp pairs in a more general (albeit larger) variant (convert value to double and timesta
= CF_INTFLTINT - traditional doocs format (UTC seconds - value - status triplet).
= CF_HISTORY - all inclusive variant which embeds the original format and carries the full timestamp as well as oths
use from the point of view of 'not missing anything'. However it is also a difficult format to use for the layman.
Other output format types are possible but will not be listed here. In general one should make use of the standard histor
0. GetArl:hwedDataAEText{}, etc. This stock meta property also accepts input 5pen:|fv|r1g the time range and other pz
CF_INT32 or CF_DOUBLE an array of up to 8 optional values. The first value gives the start time (UTC). The secor
starting index (in case the stored property is an array). The fourth value is the sampling raster. The fifth and sixtk
of the system stamp value (e.q. the cycle or event number). If these two input values are indeed submitted, then
data will be returned. If the seventh input variable is non-zero then the user stamp will be targeted instead of the
the field index if the archived parameter is stored as a compound data type or a structure.
= Index 0: starttime (UTC)
Index 1: stoptime (UTC)
Index 2: specific array index (if record is an array) == 0 means "just look take if from the input device nam
Index 3: sample raster (0 == find the 'best’ raster for the given range)
Index 4: start system stamp (but only look for the system stamps within the time range given)
Index 5: stop system stamp (0 => use the current system stamp)
Index &: if 1= 0 {and index 5 |= 0) then index 4 and 5 refer to a2 search on the "user stamp’”.
= Index 7: field index (in case the record is a struct or compound data type).
If there is no input, or fewer than 4 CF_LONG or CF_DQUBLE values are passed, then the default stop time is the current
extrapolated time based on the requested size of the call. The default index is '0', and the sampling raster is determined
time range.
".HIST@" {synonym ".HST@") returns the local history for the associated property. This call is a variation of the ".HIST
will deliver the record at the specified time or next stored data if there is no record at the precise specified time. The ret
returned. As this call does MOT deliver an set of data over a time range, the requested output format should be that of tl
where a targeted system stamp is specified as the fifth input parameter, in which case, the initial two input parameter m
expected.

Release 5.1.0

O <p>_H|ST input . Datatype = Int32 or
Double: order is

. Java Instant Client

.

File Options Data Transfer Monitor Options Information Help I m po I l a nt !

Context Subsystem VU RCCESS

TEST * |@ ALL ¥ | Stock Properties [_| Meta Properties Input Data

Server Device Property INT32 v |

. (@] |Ampitude. risT | time: 13:50: 15 10-Jun-2019
Timeout fime: 13:50:23 11-Jun-2019

i : Datatype =
. Java Insfant Client i
File Options Data Transfer Monitor Opti KEYVAL U E 5 ST RI N G [} @ ;ﬁgg ig
o @] or TEXT will work! P N

a de

Server EUCE FPTOper Ty KEYVALUE v |
v
PulseServer v |@ #0 b |@ Amplitude. HIST StarimE=10.6.201 13:50:15
Data Size Data Type Timeout stoptime=11.6.2019 13:50:23
1000 DELDELDEL - local archived data for targeted device over time range 4 index=1 scale
sample=1 =
- startstamp=24027315
JTEST /PulseServer /#0 Amplitude HIST @ 14:00:07.774 | Read with Input stopstamp=240298 18 ry
system stamp: 24028808, user stamp: 0 | Poll est Decorations
(0,00 [256.0, 1.560254364729496E9, 2,4028724E7] -~ est Draw Mode
(0,1) [256.0, 1.560254365733273E9, 2.4028725E7] Draw Mode
(0,2) [256.0, 1.56025436673811E9, 2,4028727E7] Texthox - [lap
(0,3) [256.0, 1.560254367738527E9, 2.4028729E7] g =
(0,4) [256.0, 1.560254363754302E9, 2,4028731E7] Ledmal Post-Fivw (TEXT Tnnutl

(0,5) [256.0, 1.560254369748531F9, 2.4028733E7]

(0,6) [256.0, 1.560254370759413E9, 2. 4028735E7] [Autoscale O d t i m rt t' oL
(0,7) [256.0, 1.560254371755934E9, 2402373 7E7] [Log Scale raer notli po ant P30 (1 ms)
(0,8) [256.0, 1.560254372746215E9, 2, 4028739E7]

[History =
(0,9) [256.0, 1.560254373747298E9, 2.4028741E7] o nee o specl y
(0,100 [256.0, 1.560254375733963E9, 2.4028745E7] Suggest Decorations
(0,11) [256.0, 1.560254376746886E9, 2.4028747E7]

(0,12) [256.0, 1.560254378728054E9, 2.4028751E7] diEis s eaCh or any |nput
(0,13) [256.0, 1.560254379720816E9, 2.4028753E7] Overlap
=~ variable

(0.14) [256.0. 1.5602543807392049E9. 2,4028755E7] s
Input Pane (&) koo oo

Settings: UDF, Timer | Suppress Query Properties Last request: 14:00:09,.326 (2 ms)

[Release 51.0

Buffered Server ...

Easiest way to write a server!
o Directly in C/C++

o LabView

o MatlLab

o Python

o As yet no ‘buffered server’ in Java or .NET
Sorry: you'll have to use the ‘full server API’

Buffered Server ;: C/C++

hittp:/facweb desy.defmesftineftbufsn_Bh.html PR H < ‘

File Edit Wiew Faworites Tools Help

| Features | Central Services | csv-Files | Types | Transfer | Access | API-C | API-VB/ActiveX | API-Java | Examples | Downloads

Buffered Server API

TINE buffered server documentation. More...
#1 e “tine.h"
ude "listener.h”
Functions
int AttachServer (char *srvExportMame, char *srvEQPName, int ndevices)
Attaches the TINE server according to the input given.
int AttachServerEx (char *srvExportName, char *srvEQPName, int ndevices, void(*tmr)(void), int tmrInterval)
Attaches the TINE server according to the input given.
int GetInputDeviceNumber (void)
Returns the device number associated with the WRITE call.
int getNotifiedProperty (char *prpName)
Retrieves the property which caused the notifier to be called.
int getNotifiedPropertyAndDevice (char *prpName, char *devName)
Retrieves the property which caused the notifier to be called.
int hasInputChanged (char *prpName)
Checks whether there are new input data for the given property.
int pullBufferedData (char *prpName, char *devName, BYTE *prpData, long prpSiz)
Retrieves the contents of the input data buffer associated with the given property.
int pushBufferedData (char *prpMame, char *devMame, BYTE *prpData, long prpSiz, int prpSchedule)
Refreshes the contents of the data buffer associated with the given property.

int RegisterBufferedDeviceName (char *devName, int devNr, char *devRdr, char *devDesc)
Registers a device with the current device server.

int RegisterBufferedDeviceNameEx (char *devName, int devNr, int devMask, float zPos, char *devRdr, char *devDesc, char *devLocation)

Registers a device with the current device server. (extended call).

int RegisterBufferedProperty (char *prpName, long prpInSiz, short prpInFmt, long prpOutSiz, short prpOutFmt, float prpMax, float prpMin, char *prpEgu, short access, char *prpDsc)

Registers a property with the current device server.

int RegisterBufferedPropertyEx (char *prpName, long prpInSiz, short prpInFmt, long prpOutSiz, short prpOutFmt, float prpMax, float prpMin, char *prpEgu, short access, char *prpDsc, int

prpld)
Registers a property with the current device server. (extended call).

int RegisterBufferedPropertyEx2 (char *prpName, long prpInSiz, short prpInFmt, char *prpInTag, long prpOutSiz, short prpOutFmt, char *prpOutTag, float prpMax, float prpMin, char

*prpEgu, short access, char *prpDsc, int prpld, int arrayType, int rowLength)
Registers a property with the current device server. (doubly extended call).
int RegisterServerCallback (char *prpName, int(*cb)(void))
Registers a callback routine to be called when a WRITE access property is called.
int RegisterServerNotifier (char *prpName, void{(*nf)(int))
Registers a Notifier routine to be called when a WRITE access property is called.
int RegisterServerNotifierEx (char *prpName, void(*nf)(int), int nid)
Registers a Notifier routine to be called when a WRITE access property is called (extended call).
int SetBufferedDataSize (char *prpName, int dataSiz)
Establishes the maximum returned array length for the target property.

Functions

Examples ...
DESY2 TestBeam:
BeamRates.TB21,
BeamRates.TB22,
BeamRates.TB24

Detailed Description

TINE buffered server documentation.

<

Buffered Server : Labview

Qo

Eile Edit View Favorites Tools Help

i http://adueb. desy.de/mes/tine/tinelsbiiewARLhtm| P-c || d | S

[@r.[25.]>

| Features | Central Services | csv-Files | Types | Transfer | Access | API-C | API-VI

Simple LabView API for Windows Exam ples -

LabView allows the incerporation of the C or VisualBasic APIs (including ActiveX controls) in its application development envirgl

this end, we provide several simple LabView VIs which are based on the TINE BufferServer API and which provide an easy-to-s
PETRA RF (ELWIS/ZWER

servers
It is strongly suggested that server information be registered via the local database files fecid.csv, exports.csv, and <EQM=-d D ESY2 R F E I WI S/ Z WE RG

Files. Suffice it to say that registering server names, property names and information, and device names via API calls in LabVi]
IvTineSrvInit

-
In LabView it is only neccessary to "attach’ the server to the registered information from the database files. This should be donj (B u n c h/D a rk) C u rre nt M o n Ito rs

be the only vi you need to deal with if you have a ‘read-only’ server. In any event this 'principal’ vi will service all read reques
sequence structure), passing only the desired 'Export Name' of the server, which is used to cross-check the information in the

Operate Tools Browse Window Help
@‘ 13pt Application Font |+ ”gn-l:d T
~
Exporthlame: I Init. Ret, Code
JBUFSINE i
Input: Exporthlams is the Device Server's Export Nams as
ertered inexports.csy'
Output: Ret. Code s the intialization return code:
Far success),
. =
£ Ed

Parameters:
ExportName (String) is the Export Name of the device server. This must match an entry in the exports.csv file.

Returns:
0 if successful otherwise a TINE error code.

Example:

IvTineSrvInit.vi takes only one String input parameter, namely the Export Name of the device server to be managed by the underlying subsystem.

Exporthiame]

Y
T

Buffered Server : MatLab

e hittpi/fadweb.desy.de/mcs/tineftinebatLabAPLhtrm #hL ServerAPL
File Edit View Favorites Tools Help
Server API
~
You are always at liberty to invoke the MatLab engine routines within a standard TINE server to access functions written in Matlab from a standard server. This approach has its merits but also
requires you to know your way around in 2 programming languages, namely MatLab AND either C or java.
In many cases this is an unnecessary and unwarranted complication. You can also write a TINE server completely in Mat] Exam Ies
again, these routines follow in the most part the paradigm of the Buffered Server. [N
tine_attach_server f
If the server's properties and devices are available via a TINE database (produced, for instance, by using the TINE serve] (n o n e S o a r [N])
configuration database to be read and make the configured properties and devices avialable. The server will automaticall
this stage there will likely be NO intersting data to be read from any of the properties, as the underlying buffers will hav:
Parameters:
egquipment_module_name is the so-called 'local name’ of the equipment module. This is a 6-character name us
required only to be unigue within the process. In MatLab, you will likely have only a single registered server per MatLab process, so this minimal restriction
scarely presents a problem. Although a meaningless character string such as "1" will suffice, it is typical to provide a 2-letter acronym followed by "EQM" (for
equipment madule), for instance "MLBEQM".
export_name is the equipment module's exported name. This is the server name which all control system clients will "see’. This can be up to 32-characters in length. This
name must be unigue within the registered context (as given in the fecid.csv file or fec.xml file).
device_capacity is the maximum number of device instances that this server will manage.
Alternatively you can completely forgo any configuration database and register all necessary information via the registration API calls 'tine_register_fec', 'tine_register_server',
'tine_register_device', and 'tine_register_property’ (see below).
tine_pushdata
In order to supply the registered properties with data, the MatLab "server’ should call 'tine_pushdata’ when it has determined that new data are available for the property in question. Using just
'tine_attach_server' and 'tine_pushdata’ in this manner are theoretically the only MatLab calls necessary to provide a 'READ-ONLY' server.
Parameters:
property is the property for which the supplied data are to be used.
device is the specific device instance for which the supplied data are to be used. This must be a string corresponding to a registered device or a string of the form "#1", etc. which
then indicates the device instance 'numerically’.
data is the data (array) which is to be 'pushed’ into the underlying property buffer.
size {optional) is the length of the data array to push into the property buffer. If omitted, the entire contents of the data array will be used.
isScheduled (optional) is an integer flag which if nen-zero instructs the subsystem to immediately notify all listening clients of a change in the property’s data.
If the server is to respond to WRITE commands, it should provide a property dispatch handler by making use of 'tine_attach_handler'.
Note that if the data to be pushed is a structure, this must correspond to a registered structure AND the property in question must be registered to support this structure. See the discussion below
concerning registering a structure and registering a property.
tine_attach_handler
If a property is to accept WRITE requests, that is reguests which attempt to change a setting, then the Matlab server should provide a dispatch handler for the corresponding property. This is done
by make a call to 'tine_attach_handler’ and providing the appropriate MatLab function to act as the dispatcher.
Parameters:
property is the property to which the handler is to be associated.
handler_name is the name of a MatLab ".m' function to be called when a WRITE transaction for the property is being requested by some client. This ".m' function must return a status {an
integer value, where '0' means 'success’), and it must have the prototype <dispatch={'property’,'device’,data), where 'property’ and 'device’ will be set to the values in the
call and 'data’ will contain the contents of the set values. If no data have been sent, then this will be a null value. It is up to the dispatch routine to check the data type of
this parameter and to either accept the call (return "0") or to reject the setting on some other grounds (return non-zero : see the section on TINE error codes).
tine_dispatch
In some unsual circumstances, the provided MatLab dispatch handler might throw an exception or otherwise be unable to complete normally. This will effectively block any WRITE access to the v
rarroenandina nranarhu indafinitaly funtil tha nracace ic ractartadl Tn ardar tn fras tha nranarty WRTTE Aienstrh handlar anain 3 sl #n tina dienatrh ran ha made
>

Buffered Server : Python

@w. | Br.Bw. B

httpiffadiveb desy.de/mes/tine/tinePythandPL htm #PyServertPT p~-a || 1 | S |@ P| E t.,‘,| PR

File Edit “iew Faworites Tools Help
Server APL

Python is in many cases a very good language in which to write middle layer logic, where data is acquired from one or more front-end servers, manipulated, and then some resulting data should be

made available to the control system "at large' for purposes of display or archiving, etc.

You can write a TINE server completely in Python by making use of the following PyTine functions described below. E I
Server. xamp es mEm

PyTine.attach_server n n

If the server's properties and devices are available via a TINE database (produced, for instance, by using the TINE s} F LAS HIXF E L Lase r tl m I n g
configuration database to be read and make the configured properties and devices avialable. The server will automal
this stage there will likely be NO intersting data to be read from any of the properties, as the underlying buffers will

arguments at all will look only for a ‘fec.xml” file, where it will expect to find all information necessary to register the

information.

Parameters: D ESY2
egm (string) is the so-called 'local name' of the equipment module. This is a §-character name used foi

be unique within the process. In Python, you will likely have only a single registered server per Py
meaningless character string such as "1" will suffice, it is typical to provide a 3-letter acronym foll

server (string) is the equipment module's exported name. This is the server name which all control syste[" 20 se rve rs SO fa r R

unigue within the registered context (as given in the fecid.csv file or fec.xml file).

capacity (int) is the maximum number of device instances that this server will manage.

Returns:
0 upon success, otherwise a TINE error code

Alternatively you can completely forgo any configuration database and register all necessary information via the registration API calls 'PyTine.register_fec’, 'PyTine.register_server’,
'PyTine.register_device', and 'PyTine.register_property' {see below).

PyTine.pushdata

In order to supply the registered properties with data, the Python “server’ should call 'PyTine.pushdata’ when it has determined that new data are available for the property in question. Using just
'PyTine.attach_server' and 'PyTine.pushdata’ in this manner are theoretically the only Python calls necessary to provide a "READ-ONLY' server,

Parameters:
property (string) is the property for which the supplied data are to be used.
device (string) is the specific device instance for which the supplied data are to be used. This must be a string corresponding to a registered device or a string of the form "#1",

etc. which then indicates the device instance ‘'numerically’.

devicenumber (int) is the specific device instance according to its numerical form only. This is frequently a better option for a server, which may not know (or need to know) which device
‘names’ have been configured. If both device and devicenumber are provided, devicenumber will take precedence.

data (object) is the data (array) which is to be 'pushed’ into the underlying property buffer.

size (int) is the length of the data array to push into the property buffer. If omitted, the entire contents of the data array will be used.

scheduied (int) is an integer flag which if non-zero instructs the subsystem to immediately notify all listening clients of a change in the property’s data.

timestamp (int) is an explicit (utc) timestamp with which to ‘tag’ the data. Normally, the time of the call to 'PyTine.pushdata’ is used as the data timestamp.

Returns:
0 upon success, otherwise a TINE error code

If the server is to respond to WRITE commands, it should provide a property dispatch handler by making use of 'PyTine.attach_handler’.

MNote that if the data to be pushed is a structure, this must correspond to a registered structure AND the property in question must be registered to support this structure. See the discussion below
concerning registering a structure and registering a property.

PyTine.attach_handler

If a property is to accept WRITE requests, that is requests which attempt to change a setting, then the Python server should provide a dispatch handler for the corresponding property. This is done
by make a call to 'PyTine.attach_handler’ and providing the appropriate Python function to act as the dispatcher.

Parameters:

Release 5.1.0 (buffered server)

Getting started ...

Either :
o Attach to a database (.csv or fec.xml)
Or:
o Register server, properties, devices via API
Then:
o Push associated data when it changes

Release 5.1.0 (buffered server

Really simple sine server (c):

ftinclude <stdio.h>
finclude "tine.h"

finclude "tbufsrv.h"

#define NPOINTS 1024
float sinbuf [NPOINTS]:;

volid update (void)
1
int 1i;
for (i=0; 1<NPOINTS; 1i++)
1 1
sinbuf[i] = (float) (rand() %) o+ * (float) (sin(i* / (NBCINTS/2))) ;
}

pushBufferedbData ("3ines"," w0", (BYTE *)sinbuf,NPOINTS,FLLSE) ;
=}

int main{int argc,char *argwv[])
H
char c;

AttachServerEx (NULL ,NULL, 0 ,update,):

SystemWaitCycleTimer () ;

return H

Release 5.1.0 (buffered server)

Really simple sine server (python) :

import PyTine as pt
import numpy as np
import random

N=
ix = np.arange (N)
vals = np.zeros (shape=(N))

def updateSineCurve()

vals = * random.random () + * np.sin(Z * np.pi * ix / W)
rc = pt.pushdata (property="Sine’' ,device="'SineDev(’ ,data=vals.toli=t())
return;

rc = pt.attach server()

for 1 in range(l,10):
rc = pt.pushdata (property="Zmplitude',device="53 Devl',data=ampl)

updateSineCurve ()

[Release 5.1.0 (buffered server)

Are there any disadvantages?

O
O
O

Can only have 1 server per FEC.
Cannot overload properties.
Cannot have ‘READ with input’

Input is coupled to WRITE access !
Some aspects of property handling are
not available (but nothing serious).

The registered property information is taken
literally!

Release 5.1.0

Python news:

o PyTine now supported in
python 2.7 -> 3.7

o PyTine.history() :

bug-fix: Depth string was getting clobbered ...
more input specification available ...

o PyTine.set() and PyTine.call()

improved ‘best guess’ as to input size and
format

Release 5.1.0 (python)

Consider something like:
>p> ByTine.get (address="/TEST/SineServer/SineGend’ ,pr:pe::y:fﬁmplitud

o How to send ‘278" ?

Is it a floating point or integer value?
Does the server expect an array of some length?

o PyTine (15t call) asks the server how
property ‘Amplitude’ was registered and
what it expects for WRITE commands ...

bug-fix: if server did NOT register the property for

WRITE calls, then the call above returned an
error!

or explicitly pass :
format=‘float’, size=1

»x> pt.set |
|' address', 'property' [, input, 'format' ,size, Cimeout, 'mode '] |

Release 5.1.0

Best Guess ...

o determine what the input looks like (float, int, or
string) and how many

»>»>» PyTine.zet (addreas="/TEST/5ineServer/5ineGend" ,property="amplitude’',input=278)

o find/match to a registered WRITE property
no WRITE property ?
then use the read property attributes
If data type discovered then use it, else go with guess

what if ?

o (e.g. PETRA Kicker) property registered to accept 1
FLTINT and deliver 1 INTFLTINT) ?

Find the server programmer and ask him to change it ?
Must use PyTine.call() with mode=WRITE

pt.calll(

'address';'prnpert?'[;input;'mnde';'fnrmat';siZE;'inputhrmat';inputsiZE;timEDut”

Release 5.1.0

PyTine.history()

pt.histor 1_:,r|:|
|address, property[,'stop', 'depth','flags', timeout] |

o Two new arguments to offer more
flexibility:
sample
numberPoints

