
ACOP + COMA + TINE
in Java

Igor Križnar, Cosylab
26.09.2007

Contents

● Presentation of concept
● Summary of features
● Discussion

Demo 1: Putting application
together

● Create new visual class from Frame
● Check generated code
● Add chart, gauger, slider, wheelswitch
● Show customizers
● Show generated code
● Select connection
● Start application
● Drop rest of connections to designed

application

Demo 2: Run-time
customization

● Add channel to chart
● Add channel to chart with converter
● Add converter to slider
● D&D this setting to native text area
● D&D this settings to another application

instance

Demo 3: Inducing Coma

● Start coma starter
● Put together new simple panel,connect to

channel
● Save/load with starter
● Add coma to demo
● Save/load xml to demo app

Summary of Features

● ACOP Java Beans features
● COMA features

Goals of ACOP Java
Components

● Follow JavaBeans standards and use Swing
components
– Usable in Eclipse VE and other VCE
– Suitable for newbies

● Simple panels assembled and customized
with mouse clicks
– Custom customizers
– With minimal manual coding

● Rapid application development suitable
components

Available ACOP Expert Java
Components

● Acop
– Chart with powerful API, familiar with VB

interface
– Pure GUI logic

● AcopTransport
– Wrapper for TINE and simulation
– Pure data logic
– Can be used without Acop chart

New ACOP Java Components 1

● AcopChart
– Extends Acop chart in order to fit into RAD toolkit
– Tries to guess most suitable operation mode
– Fully configurable in desing-time and run-time

mode

– Still usable as Acop
chart

New ACOP Components 2

● AcopSlider
● AcopWheelswitch
● AcopDialknob

– Changes value with
mouse pointer

● AcopLabel
– Type-in value

● AcopGauger
– RO value display

Common ACOP Java Displayer
Features

● Connects to TINE trough AcopTransport
● D&D data exchange

– Simple string (TINE channel name)
– Connection parameters
– Component parameters

● At design- and runt-time
– Connection browser
– Customizer dialogs
– Value manipulation plug-ins intercepts value

between transport and GUI

Other Useful ACOP Java
Component(s)

● ConnectionCustomizer
– Reusable TINE connection browser component

for single and multiple selection
● Extensible set of value manipulation plug-ins
● General purpose visual and non-visual beans

Where To Get Them?

● In src/main/java
– de.desy.acop.displayers

● ACOP displayers
– de.desy.acop.displayers.selector

● Connection browsers
– de.desy.acop.transport

● AcopTransport
● In src/displayers/java

– Usefull beans from cosylab
● In src/test/java

– Demos and tests

Before Practice Examples

● Configure your Eclipse VE !!!!!!
– Minimizes exception damage

Demo Applications

● de.desy.acop.demo.AcopChartDemo
– Simple composition with AcopChart.
– Connections set in design-time with multiple

connection customizer
● de.desy.acop.demo.AcopConvertersDemo

– On-the-fly value rendering with converters
● de.desy.acop.demo.AcopDisplayersDemo

– Several Acop displayers
– Connection set in design-time with connection

customizer

COMA

● Runtime Java clients editor
● For “thin clients”

– Removes need for programming skills
– Fast and easy application changes
– Works best with smart non-coupled Java Beans

components (like ACOP)
● For “rich clients” as well

– A lot business logic, coupled GUI components
– Application can be used in coma in hybrid mode
– Removes need for programming skills for simple

tasks

COMA Features

● Very lightweight:
– Single line: new Coma(this);
– Or no coding, run trough Coma starter

● Stores client configuration in XML files
– Stores partial or full client configuration
– Can be manually edited

● Configuration can be stores, loaded or
reloaded (rich client with several “flavors”)

● Operates with Java Beans and reuse
customizers (work in progress)

XML configuration file example:

<?xml version="1.0" encoding="UTF-8"?>
<config>
 <width> 492</width>
 <height> 427</height>
 <components>
…
 <object class = "de.desy.acop.displayers.AcopDialKnob" name = "object_2" persistent = "false">
 <x> 335</x>
 <y> 264</y>
 <width>99</width>
 <height>115</height>
 <connection>TINE/TEST/SINE/SINEDEV_0/Amplitude,POLL,1000,-1</connection>
 <graphMin type = "class java.lang.Double">0.0</graphMin>
 <enabled type = "class java.lang.Boolean">true</enabled>
 <title type = "class java.lang.String">TINE/TEST/SINE/SINEDEV_0/Amplitude</title>
 <userValue type = "class java.lang.Double">5.139999866485596</userValue>
 <graphMax type = "class java.lang.Double">1000.0</graphMax>
 <minimum type = "class java.lang.Double">0.0</minimum>
 <maximum type = "class java.lang.Double">1000.0</maximum>
 <userMin type = "class java.lang.Double">0.0</userMin>
 <value type = "class java.lang.Double">267.4703674316406</value>
 <dataState type = "class com.cosylab.gui.displayers.DataState">Normal = { 2007-04-03 19:03:52.670 "Success" }

</dataState>
 <units type = "class java.lang.String">bozos</units>
 <userMax type = "class java.lang.Double">1000.0</userMax>
 </object>
…
</components>
</config>

