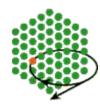


CDI interface to real-time EtherCat

Uwe Ristau Petra III Instrumentation EMBL-Hamburg

TINE Workshop 9/2007 27th September 2007

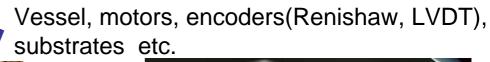


Outlook

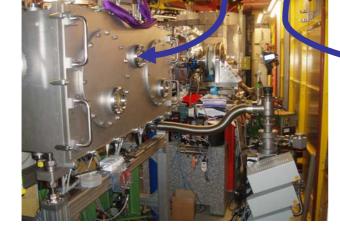
- Multilayer Monochromator @ BW7A
 - Announcements
- Future Projects

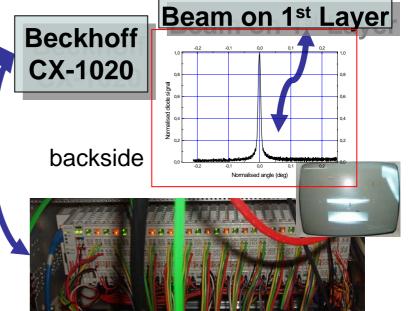
The Beckhoff redundant real time ethernet based ETHERCAT fieldbus

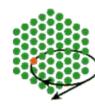
In 12/2006 there was a Beckhoff TwinCat



 The first test project was the BW7A Multilayer Monochromator which is 100% equipped with Beckhoff DAQ

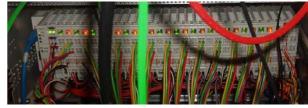

The Multilayer project @ BW7A (S.Fiedler)

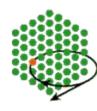




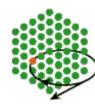
WIN-CE 2GHz,1GB Computer TINE, MotorServer, CDI

Control of the BW7A Multilayer


- 4
- P



- 14 Stepper motors driver by
 - 5Ampere Stepper motor controllers with amplifiers
 - 2 puls direction stepper motor controller with Berger Lahr driver unit
- 18 Analog inputs
 - Thermocouples
 - LVDTs
 - Diodes
 - Potentiometer
 - Vacuum Gauges
 - 24 Digital inputs and outputs
 - Vacuum valves
 - Shutter control
 - Trigger signals
 - 4 Counters
 - Renishaw digital encoder

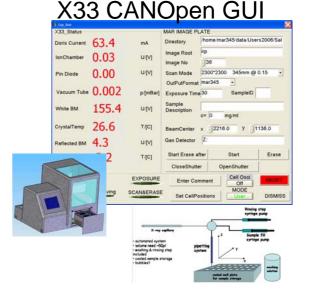


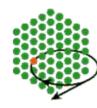
The Multilayer control system

- Data acquisition with Beckhoff Ethercat realtime fieldbus system and the older K-Bus
- P
- Running on a WIN-CE Computer
- Device servers for TINE are generated by CDI (Common device interface)

Device server will run embedded on the PLC computer as soon as the WIN-CE Tine support is available

PLC: Where are they used?

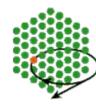

- Interlock control, Vacuum control, Machine interlock
- Undulator control for PetralII
- ESRF uses WAGO also at the beamlines
- New possibilities because of the stepper motor controller available
- EMBL started 2004 with CANOpen at the small angle scattering beam line X33 with good results.



Since than new ethernet based real time fieldbus systems have been developed

Since 12/2006 EMBL tests the Ethercat fieldbus and has chosen the multilayer monochromator as a test case for the PetralII project.

Some EtherCat specifications


- Flexible small distributed units
- Clock synchronization of connected controllers up to 1 us
- Real time Ethernet based with cycle times down to 100 us possible
- Connected via CAT5 Ethernet cable and ordinary network switches
- Counter, DIO, AIO, Stepper, DC-motor control all in one system available
- High reliability, industrial standard, Computer without rotating parts (fans, hard disks, etc)

Triggers and AI with XFC modules of Beckhoff synchronized by 100ns and incremental delays of 10ns possible, analog input up to 200kHz (15 bit,0.5%precission)

- Cheap, fast delivery, long live products supported for many years
- (CAN, S5, SerCos, Profibus Gateways available)
- Easy interfacing between fieldbuses



Beckhoff motor control

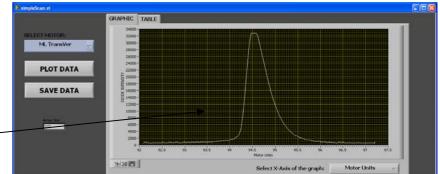
- Controller & Amplifier/Driver support closed loop operation of stepper motors
- KL-2541:5 A,64microStepping,100KHz, very integrated and small, 240Euro

- KL-2531:1.5A, no closed loop option available, 150Euro
- KL-2521: Puls-direction motor controller for single axis without closed loop option, 150 Euro
- In combination with the PLC (as many analog and digital signal inputs as needed), flexible product
- PLC allows ON-THE-FLY motor scans
- Read out of all parameters of the controller/ amplifier and Statuses and positions up to 10 Hz readout of all statuses and positions by a single call.
- Beckhoff offers also servo motor drivers we just started with the AX2003 module

Stepper motor control

• Chopped stepper motor amplifier offer up to 20 times micro stepping

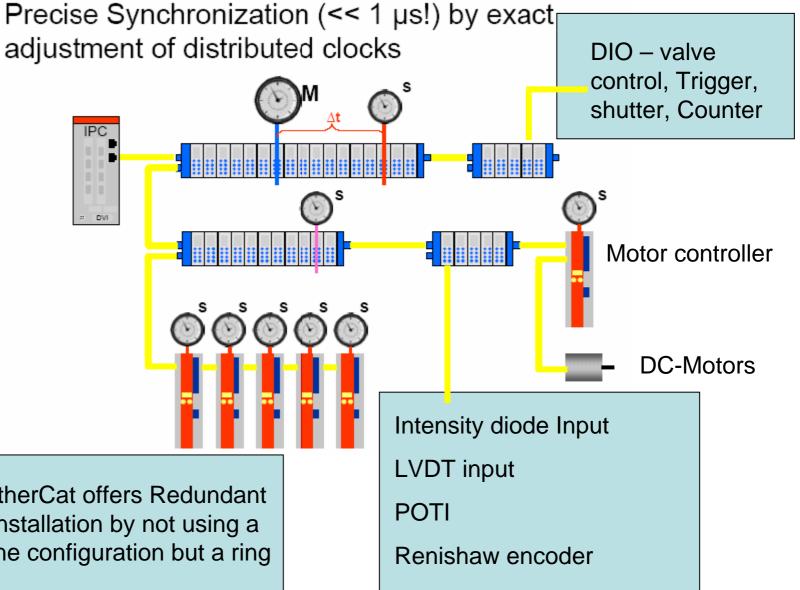
- Linear amplifier are able to support up to 128 micro stepping
- Chopped amplifier are source of electromagnetic noise. Shielded cables and the use of disc motors which are 10% more expensive but do suppress the noise induced by the inductivity of the motors


Chopped modules are smaller and produce less heat load

- On the fly Scans
 The structure of the PLC program is very flexible and allows to perform **On** the Fly Scans
 - after the start of a motor in each cycle of the PLC the data will be written into arrays.
 - Up to 32kB of data can be written to a array during one single move (diode analog input LVDT, Renishaw).
 - The readout can be continous or at once after finishing the move. This reduces the network traffic and is still fast.

The start of a 'On The Fly' scan is proceeded by selection of the axis to scan and performing a move.

The synchronization problem

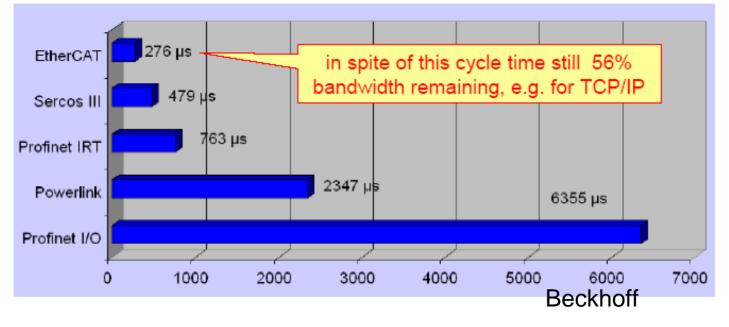


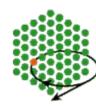
EtherCat offers Redundant Installation by not using a line configuration but a ring

IPC

.: DVI

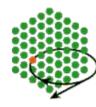
EtherCAT Performance Example


P



40 Axis (each 20 Byte Input- and Output-Data)
50 I/O Station with a total of 560 EtherCAT Bus Terminals
2000 Digital + 200 Analog I/O, Bus Length 500 m
Performance EtherCAT: Cycle Time 276µs at 44% Bus Load, Telegram Length 122µs
For comparison:

Profinet IRT 763 µs, Powerlink V2 2347µs*, Profinet RT 6355 µs



CDI and TINE device server

- CDI uses in a csv file defined variables, TwinCat/EtherCat devices and Templates for automatic device server generation.
- Only one line of code per device or variable is necessary to export this function as device server property.

The TINE CDI csv file for automatic server generation

regAry[8],1,,-1 [].Status,1,,-1 .microSteps.1

[].fullSteps,1,,-1 Rps,1,,-1

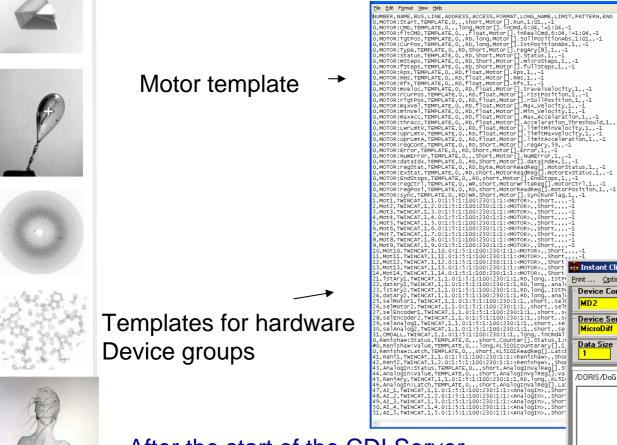
.Min Velocity.

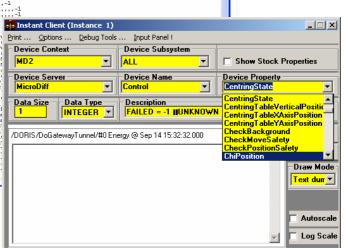
].regary,59,,-1 Error.1..-1

.NumErro

:⊲MOTOR>.

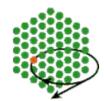
<MOTOR>,


<MOTOR>...Short...

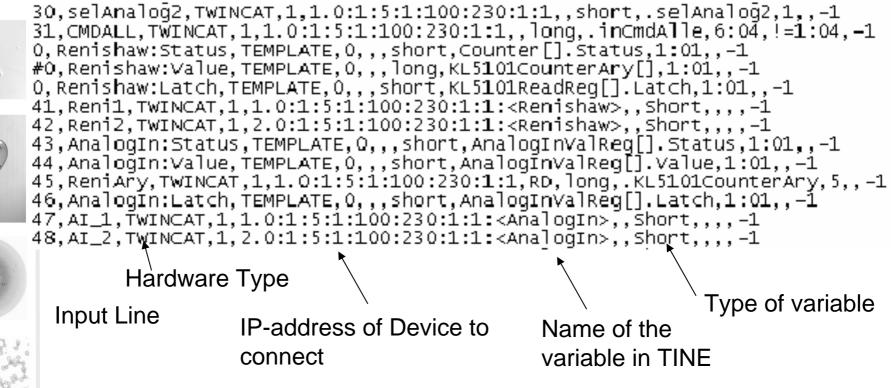

L, short

1: MOTOR> Short

.rIstPosition,1,,-1 .rSollPosition.1.-Max_Velocity,1,,


.MIN_VELOCITY,1,,-1 .Max_Accelaration_1,,-1 .Accelaration_Threshould,1,,-1].limitMinvelocity,1,,-1].limitMaxvelocity,1,,-1].limitAcceleration,1,,-1

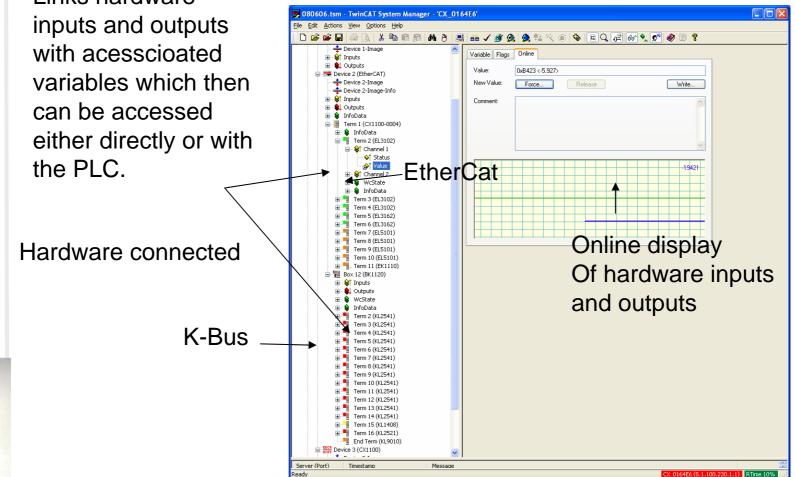
After the start of the CDI Server All variables will be exported in the TINE Instant Client the TINE General System Client which allows to access all Data of Servers connected to the Control system



The CDI Templates: Example Motor

NUMBER, NAME, BUS, LINE, ADDRESS, ACCESS, FORMAT, LONG_NAME, LIMIT, PATTERN, END 0,MOTOR:Start,TEMPLATE,0,,,short,Motor[].Run,1:01..-1 0, MOTOR: CMD, TEMPLATE, 0, , , long, Motor [].incmd, 6:04, !=1:04, -1 0, MOTOR:fltCMD, TEMPLATE, 0, , , float, Motor [].inRealCmd, 6:04, !=1:04, -1 0, MOTOR: TgtPos, TEMPLATE, 0, , RD, long, Motor []. SollPositionAbs, 1:01, , -1 0,MOTOR:CurPos,TEMPLATE,0,,RD,long,Motor[].IstPositionAbs,1,,-1 0.MOTOR:Type,TEMPLATE,0,,RD,Short,Motor[].regAry[8],1,,-1 0, MOTOR: Status, TEMPLATE, 0, , RD, Short, Motor []. Status, 1, , -1 0,MOTOR:mSteps,TEMPLATE,0,,RD,Short,Motor[].microSteps,1,,-1 0, MOTOR: fSteps, TEMPLATE, 0, RD, Short, Motor [].fullSteps, 1, , -1 0, MOTOR: Rps, TEMPLATE, 0,, RD, float, Motor []. Rps, 1..-1 0, MOTOR: Rms, TEMPLATE, 0,, RD, float, Motor []. Rms, 1, , -1 0, MOTOR: Rfs, TEMPLATE, 0, , RD, float, Motor []. Rfs, 1, , -1 0,MOTOR:mveloc,TEMPLATE,0,,RD,float,Motor[].travelvelocity,1,,-1 0, MOTOR:rCurPos, TEMPLATE, 0,, RD, float, Motor[].rIstPosition, 1,, -1 0, MOTOR:rTgtPos, TEMPLATE, 0,, RD, float, Motor[].rSollPosition, 1,, -1 0, MOTOR:maxVel, TEMPLATE, 0,, RD, float, Motor[].Max_Velocity, 1,, -1 0,MOTOR:minvel,TEMPLATE,0,,RD,float,Motor[].Min_velocitv.1..-1 0,MOTOR:maxAcc,TEMPLATE,0,,RD,float,Motor[].Max_Accelaration,1,,-1 0, MOTOR: thrAcc, TEMPLATE, 0, , RD, float, Motor []. Accelaration_Threshould, 1, , -1 0,MOTOR:LwrLmtV,TEMPLATE,0,,RD,float,Motor[].limitMinVelocity,1,,-1 0,MOTOR:UprLmtV,TEMPLATE,0,RD,float,Motor[].limitMaxVelocity,1,,-1 0,MOTOR:UprLmtA,TEMPLATE,0,RD,float,Motor[].limitAcceleration,1,,-1 0,MOTOR:regCont,TEMPLATE,0,RD,Short,Motor[].regAry,59,,-1 0, MOTOR: Error, TEMPLATE, 0, , RD, Short, Motor[]. Error, 1, , -1 0,MOTOR:NumError,TEMPLATE,0,,,Short,Motor[].NumError,1,,-1 0,MOTOR:dataIdx,TEMPLATE,0,,RD,Short,Motor[].dataIndex,1,,-1 0, MOTOR: regStat, TEMPLATE, 0, , RD, byte, MotorReadReg[].motorStatus, 1, , -1 0,MOTOR:ExStat,TEMPLATE,0,,RD,short,MotorReadReg[].motorExStatus,1,,-1 0,MOTOR:EndStops,TEMPLATE,0,,RD,short,Motor[].EndStops,1,,-1 0,MOTOR:regCtrl,TEMPLATE,0,,WR,short,MotorWriteReg[].motorCtrl,1,,-1 0, MOTOR: reqPosi, TEMPLATE, 0, , RD, short, MotorReadReq[].motorPosition, 1, , -1 0, MOTOR: sync, TEMPLATE, 0, , RD | WR, Short, Motor []. syncRunFlag, 1, , -1

The CDI definition csv file


Additional : Limits, scaling factors, display format, etc can be defined inside this table

CDI supports CANOpen, TwinCat/EtherCat, SEDAC, RS-232, Siemens S5/S7

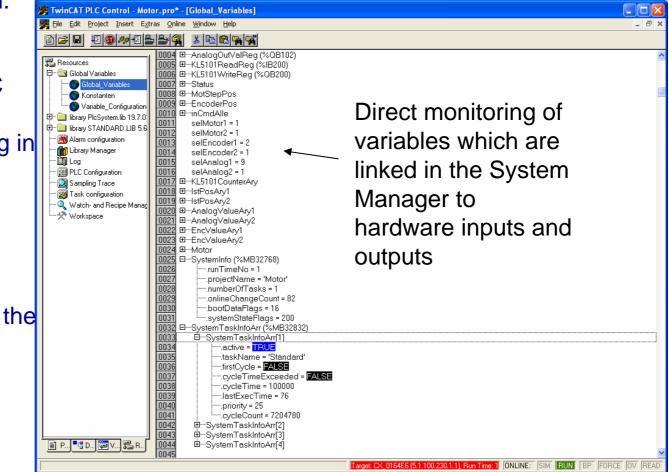


TwinCat system manager

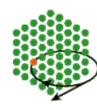
Manages the hardware connected

Links hardware

TWINCAT PLC Cycle time etc

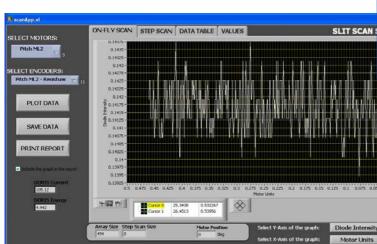

The PLC collects all connected hardware input and output signals connected to the PLC with shortest cycle times of 100us for EtherCat and 10ms for the

TwinCat system.



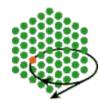
Advantage of PLC programming: Easy programming in FUP, AWL, Kontaktplan or STRUCTURED TEXT.

Structured Text is the language Used for complex tasks

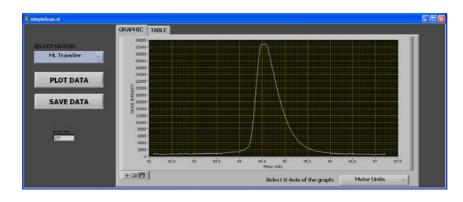

Cycle time X100ns.

Multilayer control available

Motor control unit. Encoder readout. Multi axis move, pseudo axis Softlimits etc

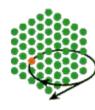


Raw scan data presentation


Example scan. For every move The data can be read out if wanted

	ON-FLY SCA	N STEP SCAN	DATA TABLE VALL	ES	SLIT S	CAN SYS	TEM
CT MOTORS:	1 manual and			a		-	and a second
Pitch ML2	DIODE	MOTOR STEPS	ENCODER VALUE	MOTOR UNITS	ENCODER UNITS	ERROR	
The State	0.143738	816597	11937	0.275933	0.279618	0.003685	
	0.143127	816021	11917	0.275033	0.278630	0.003597	
	0.141907	815373	11897	0.274020	0.277642	0.003622	
T ENCODERS:	0.141907	814797	11876	0.273120	0.276605	0.003484	
	0.142537	814149	11857	0.272108	0.275666	0.003558	100
Pitch ML2 - Renishaw 🛫 🔢	0.142517	813572	11838	0.271206	0.274728	0.003521	
	0.142517	812922	11820	0.270191	0.273839	0.003648	1000
	0.141907	812339	11801	0.269280	0.272900	0.003620	1
PLOT DATA	0.141296	812696	11763	0.268275	0.272011	0.003736	
	0.140686	811116	11764	0.267369	0.271073	0.003704	
	0.140076	810474	11746	0.266366	0.270183	0.003818	100
	0.141296	809895	11727	0.265461	0.269245	0.003784	
SAVE DATA	0.141907	809252	11707	0.264456	0.268257	0.003801	
	0.141296	808672	11686	0.263550	0.267220	0.003670	
	0.141907	808030	11666	0.262547	0.266232	0.003685	
and the second se	0.141907	807450	11647	0.261641	0.265293	0.003653	
PRINT REPORT	0.141907	806806	11628	0.260634	0.264355	0.003721	
	0.141907	806227	11610	0.259730	0.263466	0.003736	100
	0.141296	005580	11591	0.258723	0.262527	0.003804	
C such the graph in the report	0.140686	805004	11572	0.257019	0.261509	0.003770	-100
	0.140606	004359	11953	0.256811	0.260650	0.003839	-
	0.142517	803780	11533	0.255906	0.259663	0.003756	
		003137	11512	0.254902	0.258625	0.003724	
DORIS Current	0.143127			0.253997	0.257500	0.003591	
DORIS Current	0.143127	002550	11491				
105.12		002550 001912	11491 11471	0.252907	0.256600	0.003613	-100
	0.142517				0.256600		

Multilayer Control Scan application



Scanning on the fly up to 32kByte data points per scanOption to scan and save to disk

The motor control tool Client Enables to set all motor and controller parameters

MOTOR REGISTERS:									
	Register	Name	Value	Mode	٨				
SELECT MOTOR:	R11	Signal Channels	296	RO					
Longitudinal 🔻	R12	Minimum Data Length	10280	RO					
	R13	Data Structure	4	RO					
	R14	reserved	0	RO					
	R15	Alignment register	32640	R/W					
	R16	Hardware version number	0	R/W	1				
	R17	reserved	0	RO	10				
READ REGISTERS	R18	reserved	1319	RO	18				
	R19	reserved	25680	RO	18				
	R20	reserved	60	RO	18				
WRITE REGISTERS	R21	reserved	0	RO					
	R22	reserved	0	RO					
	R23	reserved	0	RO					
SAVE TO DISK	R24	reserved	0	RO					
SAVE TO DISK	R25	reserved	0	RO					
	R26	reserved	0	RO					
	R27	reserved	0	RO					
LOAD FROM DISK	R28	reserved	0	RO					
	R29	reserved	0	RO					
	R30	reserved	0	RO					
	R31	Code Word register	4661	R/W					
	R32	Feature Register 1	2078	RO					
	R33	Full Motor Steps	200	R/W	1				
	R34	Encoder Increments	4000	R/W					
	R35	Maximum coil current A	100	R/W					
	R36	Maximum coil current B	100	R/W					
	R37	Number of latch Values	20	R/W					
	R38	Min. Velocity (v.min)	10	R/W					
	R39	Max Velocity (v.max)	1250	R/W	1				
	R40	Max Acceleration (a.max)	1000	R/W	1				
	R41	Acceleration Threshold (a.th)	1023	R/W	1				
	R42	Coil current (a>a.th)	50	R/W	Ŧ				
					¢.				

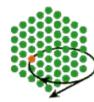
Graphical user interface of the Vacuum controls



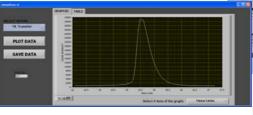
Monitoring of Valves, Temperatures, Pressures etc

In future control will also be possible

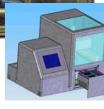
Stepper motor control


• Chopped stepper motor amplifier offer up to 20 times micro stepping

- Linear amplifier are able to support up to 128 micro stepping
- Chopped amplifier are source of electromagnetic noise. Shielded cables and the use of disc motors which are 10% more expensive but do suppress the noise induced by the inductivity of the motors



Chopped modules are smaller and produce less heat load


Control of the EMBL-HH beam lines at DORIS

- 4
- Control System of the EMBL is TINE (DESY/MCS)
- Highlights
 - Robotic Sample Changer BW7B
 - X33 Sample Changer
 - Mulitlayer Monochromator Beckhoff/EtherCat
- Next Projects
 - Generic TINE Detector server for the Pilatus 500k and the MAR 555 Flat panel Detector
 - PXI integration of a Fast digitizer 1GS/s and a FPGA (NI)

#7A EOB -0.052

Acknowledgements

Instrumentation group PetraIII Group leader: Stefan Fiedler

- Andres Pazos Pilatus
- Mario Di Castro since 7/2007

Doris Instrumentation group Group Leader: Christoph Hermes

- Bernd Robrahn Beckhoff PLC programming
- Lifu Gao
- Fernando Ridoutt

Dimitri Svergun SAXS group

- Timo, Alexej, Daniel Franke X33 SC, Pilatus, CANOPEN
- COSYLAB (Roc Stefanic TANGO2TINE)
- Phil Duval, Reinhard Bacher, Mark Lomperski DESY/MCS Hong Gong Wu Beckhoff integration CDI
- Stefan Weisse DESY Zeuthen Video system

