
IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 18 (2007) 2379–2386 doi:10.1088/0957-0233/18/8/012

TINE as an accelerator control system
at DESY
Piotr Bartkiewicz and Philip Duval

DESY, Hamburg, Germany

E-mail: piotr.bartkiewicz@desy.de and philip.duval@desy.de

Received 30 October 2006, in final form 13 February 2007
Published 6 July 2007
Online at stacks.iop.org/MST/18/2379

Abstract
Large research institutes such as accelerator-based research centres deal
with a large number of complicated components, which should be integrated
into and controlled as one homogeneous system. The components of such
systems have been frequently developed at different times, in different
countries and use different standards and technologies. The control system
of components or subsystems may use different computer hardware,
operating systems, network protocols, hardware interfaces and field buses.
This paper describes the three-fold integrated networking environment
(TINE) (http://tine.desy.de) control system, which provides control
integration of accelerators at Deutsches Elektronen Synchrotron—DESY,
Hamburg, Germany.

Keywords: control system, accelerator, computer network

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we describe the concept and real implementation
of a control system, which has been used with great success
for many years at Deutsches Elektronen Synchrotron, DESY,
Hamburg. In order to save time for someone who might
want to learn more about control systems where they are
understood as a set of algorithms, implied from the control
theory, mathematical modelling or theory of optimization,
we now emphasize that this is not the right paper. We
present here a complete software solution which enables
efficient management of data flow between various process
controlling components, such as sensors, programmable logic
controllers (PLCs), actuators, data processing computers,
central computers and so on. Consider, for the moment, a
remote sensor data readout mechanism and remote actuator
steering. This would not yet constitute a real control system.
Simple data flow mechanisms plus data processing do not
create a system. Still missing are central services, such as
archiving, alarm processing, name resolution, etc. The control
system will also have states, even if nothing else beyond ‘on’
or ‘off’. This means that the control system is apt to offer
such tools as finite state machines, sequencing and automation,
where the system can be driven from state A to state B without
human intervention. The control system will also have to

deal with synchronization of the distributed processes. This
in turn means that all of the players will have to agree on a
clock, and there should be some attention paid to the amount
of jitter allowed in the individual process clocks. The control
system will also have to maintain a strategy for security. We do
not mean simply Internet security, but also ‘system’ security,
where user A (although he is a trusted user) should not be
allowed to change setting B because the system is not in
the appropriate state. The control system will also likely
have to manage databases, meaning the general server-side
configuration databases (hardware addresses, names, etc) as
well as the controlled process data, the latter being strongly
tied to the archive system. In order to trap faults and keep
an overview of the system itself, the control system will
have logging capabilities and statistics of the control system
as a collection of controlled elements as well as the system
operation. The control system should also offer presentation
and user-interface services as well as maintenance and even
development tools.

The control system could be (and frequently is)
represented by three tiers: ‘the lowest’, closest to the controlled
process hardware tier, is called here a ‘device server layer’.
This tier is responsible for data flow from sensors and to
actuators. It usually covers connections to field buses or
controllers, or to specific hardware connected to the front-end

0957-0233/07/082379+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2379

http://dx.doi.org/10.1088/0957-0233/18/8/012
mailto:philip.duval@desy.de
mailto:piotr.bartkiewicz@desy.de
http://stacks.iop.org/MST/18/2379
http://tine.desy.de

P Bartkiewicz and P Duval

C1 C2 Ck

MS1 MS2 MSm

D1 D2 Dn

Client tier:
user interfaces, data presenters etc.

 No connection between members.
Connections to middle layer servers

and device servers.

Integration tier:
Composed data servers and services
like: archiving, logging, alarms, etc.

Connections between members.
Connections to device servers.

Device Server tier:
Connections to sensors, actuators,

fieldbuses, controllers.
 Almost no connections between members.

…

…

…

Figure 1. Three tiers of a control system.

computers. The second tier is a ‘middle-layer server’ playing
the role of an ‘integration tier’. To this tier belong those
servers processing the data from various ‘device servers’ or
other ‘middle-layer servers’. These ‘integration tier’ servers
offer composed, integrated and consistent data sets, needed
for various control perspectives. Similarly, services such
as archive services, alarm services, state and state-permit
services belong to this tier. The top layer is a ‘user-interface’
tier, typically providing a set of graphical client interfaces.
(figure 1).

2. Overview of control system tasks at DESY

Before presenting the three-fold integrated networking
environment (TINE) control system at DESY, let us look at
the ‘job specifications’ (i.e. those tasks which are expected to
be performed by the control system) and the environment and
conditions in which the system should work.

2.1. Short overview of our facilities

Deutsches Elektronen Synchrotron, DESY, founded in 1959
in Hamburg, is one of the leading centres for research at
particle accelerators in the world. DESY has two locations:
Hamburg with 1400 employees and Zeuthen, near Berlin, with
200 employees. Since its inception in Hamburg, DESY has
built several accelerators, three of which are currently used for
research: DORIS, PETRA and HERA.

DORIS and PETRA are used by geologists, biologists,
chemists, physicians and material scientists as a source of
synchrotron radiation to investigate atomic details of materials.
In addition, PETRA plays the role of a pre-accelerator for
HERA.

The hadron-electron ring accelerator (HERA) is a large,
6.3 km long dual ring accelerator, which delivers proton–
electron (or proton–positron) collisions for two experiments:
ZEUS and H1, both of which are primarily searching for new
kinds of matter and investigating the inner structure of the
proton and the strong interaction. HERA is also a source
of longitudinally polarized electrons (or positrons) for the
HERMES experiment, used for the exploration of the spin
structure of nucleons.

Every year more than 2700 visiting scientists from 33
countries come to DESY to lead research.

Table 1. Principal devices in HERA and its accelerator chains.

Number of
Device type units (approx.)

Main magnet power supplies 600
Correction coil power supplies 1400
Pulsed magnet power supplies 70
RF systems 230
Vacuum 3000
Beam position monitors 800
Other beam measurement instrumentation 2000
Air conditioning, water cooling 500

2.2. Some facts about the accelerator chains

The accelerators at DESY were of course not built at the
same time. The older accelerators are now in use as pre-
accelerators for the newer machines. HERA, our largest
machine now, uses a chain of three pre-accelerators for
the proton ring and four pre-accelerators for the electron
ring. The older accelerators and their components as well
as the control systems’ infrastructures have been repeatedly
upgraded throughout their lifetimes and are now representative
of various stages of technology. The complexity of the entire
chain of pre-accelerators and the main accelerator HERA can
be appreciated by a quick scan of table 1 [2], where a rough
count of the number of principal elements is shown.

Groups of devices such as RF components, magnets,
vacuum pumps and monitors are typically controlled by
isolated, ‘local’ control systems, especially in the initial stages
of machine commissioning. Commissioned in 1990, HERA
was no exception. One of the tasks at hand, then, was to
integrate these local systems into one homogeneous system.

In total, these ‘local’ systems comprise now, as they did
in the early 1990s, more than 500 computers, all involved
one way or another in the myriad control processes. Most of
these computers are now PCs, running Linux or Windows
XP and NT, whereas in the past Windows 3.1 and DOS
played a more prominent role. Such legacy operating systems
(Windows 3.1 or DOS) are nonetheless still in use in many
places (owing primarily to hardware restrictions). To be sure,
classic UNIX workstations, such as Sun workstations running
Solaris, Hewlett Packard machines running HP-UNIX, etc,
have always been in use and still play a prime role in accelerator
control at DESY. A number of subsystems make extensive
use of VME standard-based computers running VxWorks, and
there are also several embedded system solutions, such as
PC104 running ELINOS (an embedded Linux distribution) or
ALTERA with NIOS II core. At one time, some subsystems
were running on a VAX VMS controller. The last such
subsystem (HERA reference magnets) was decommissioned
in 2001.

Figures 2 and 3 show the structure of the ‘local’
control systems for two HERA subsystems: orbit control and
superconducting magnet quench protection.

2.3. Connection to the experiments

In addition to the control of the accelerator components and
subsystems, data exchange with the experiments is needed
for safe and proper accelerator steering. Although it was

2380

TINE as an accelerator control system at DESY

Orbit
server (NT)

~280 Beam Position
Monitors

Magnet
server (S)

~1200 Magnet
Controllers

Reference and Difference
Orbit Server (XP)

Orbit stabilisator
(XP)

Optic
Server (Lx)

Central
Archiver (Lx)

Archive
Reader (XP)

Optic and reference
orbit setting (XP)

Orbit display
(XP)

Magnet controllers
monitoring/setting (XP)

Stabilisator
monitoring/control (XP)

Figure 2. Orbit control system. TINE servers are running on MS
Windows NT (NT), XP (XP), Linux (Lx) and Solaris (S) operating
systems.

Quench
server (Vx)

Quench
detection
hardware

Central
Archiver (Lx)

Archive
Reader (XP)

Quench detectors
monitoring and

settings (XP)

Quench
server (Vx)

Totally 12
Quench
Servers

...

Central
Alarms (Lx)

Alarms
Viewer (XP)

Quench
detection
hardware

Figure 3. Magnet quench protection system. TINE servers are
running on MS Windows XP (XP), Linux (Lx) and VxWorks (Vx)
operating systems.

not needed to achieve full integration with the experiments’
control networks, it was nonetheless necessary to exchange
some amount of data with these systems, which were often
developed abroad and which sometimes made use of obsolete
technologies. Thus, connection interfaces with machines
running different brands of UNIX, VMS or MAC OS were
also required.

2.4. Requested features of the control system for the
DESY accelerator chain

Now that we have highlighted some of the details and
requirements concerning the integration and control of the
subsystems and components found in the DESY accelerator
chains we are able to list a set of criteria, which must be
available in the control system.

• Generally (all tiers)

(1) Multi-platform. A common library and interface
should be available on various hardware platforms
and operating systems.

(2) Multi-protocol. Since network infrastructure has
developed with the accelerator chain growth,
the system should integrate various Ethernet
technologies.

(3) Multi-architecture. Here we are referring to ‘data-
transport’ or ‘data-exchange’ architecture. There are
some reasons why this feature must be present. One
is the need to provide compatibility with different
‘local’ control systems, which are to be integrated
into one system. Another is the data transfer
efficiency for certain cases. This will be discussed
later.

(4) Capability of transferring various data types. Any
set of primitive data types (simple integer or float
arrays, for example) or complex data types (e.g.
mixed doublets of two primitives or user-defined
structures) between different platforms should work
seamlessly, without concern for byte swapping
between dissimilar platforms (little-endian versus
big-endian).

(5) Clear and easy method of application-specific code
integration with the system. This involves an easy-to-
understand interface where it is clear to a developer
when he should integrate his own code (if necessary)
into the system.

• Device server tier

(1) Capability of interfacing to various field buses. The
most popular field buses at DESY are SEDAC (DESY
proprietary field bus), CAN [3], ProfiBus [4], RS232
and GPIB.

(2) Small footprint. The control system kernel library
should have a small footprint in order to fit inside
embedded systems, where resources are frequently
limited.

• Integration layer

(1) Naming service. All servers and their services are
addressed only by names. The huge number of
servers excludes physical addressing.

(2) Well-defined integration strategy for other control
systems existing at DESY, such as EPICS [5] or
DOOCS [6].

(3) System for filtering and archiving data, events,
alarms, etc.

• Client tier

(1) Client browsers for the easy access of data provided
by any existing server.

2381

P Bartkiewicz and P Duval

(2) Generic tools offering access to archived data, alarms
and event viewers.

(3) Client widgets which can connect to any control
system endpoint and can be used in rapid application
development in both simple and rich clients.

Among many modern control systems, commercial or open
source, we shall see below that only TINE can cope with the
above requirements.

3. TINE: three-fold integrated networking
environment

The key word in the TINE acronym is ‘integrated’: this is a
multi-platform system, supporting currently MS-DOS, Win16
(Windows 3.X), Win32 (Windows 95, 98, NT, 2K, XP), UNIX
(Solaris, HP-UX, OSF, SGI, Linux, FreeBSD), MACOS, VAX
and ALPHA VMS, VxWorks and ALTERA-NIOS II. TINE
is a multi-protocol system, where data exchange among the
participants can occur via any of the UDP, TCP/IP or even
IPX protocols. TINE is also multi-architecture, where data
transfer can follow any of the strategies listed below.

• Client–server. This is a traditional data exchange
mechanism, available in most control systems. It is
pure, synchronous client-server data exchange, where a
client makes a request and waits for the completion of the
request. This is also a necessary mechanism for sending
commands to a front end, where the next action to take
depends on the outcome of the command. The client–
server approach has however two disadvantages: if the
server for any reasons goes down or network problem
occurs, the client application will wait until the timeout
mechanism considers a transaction to be aborted. The
second disadvantage appears, when several clients want
the same information (regular updates of control data, for
instance); a server will see each request from each client
separately. This can become a burden to the server if many
clients (say 50 or more) are getting a kilobyte’s worth of
data at 1 Hz, as the server will have to acquire the data at
50+ Hz.

• Publisher–Subscriber. For many cases, a much better
approach is the publisher–subscriber data exchange: the
client (the subscriber) communicates its request to a server
(the publisher) and does not wait for a response. Instead,
it expects to receive a notification within the timeout
period. This can be a single command, or for regular
data acquisition it can be a request for data at periodic
intervals or upon change of data contents. In this format,
the server maintains a list of the clients it has and what
they are interested in. Now if many clients want the same
kilobyte’s worth of data at 1 Hz, the server must acquire
this data set only once per second and notify the clients on
its list. This is much more efficient than the client–server
model under such circumstances.

• Producer–Consumer. A third alternative for data
exchange is the producer–consumer model. In this case,
a producer transmits his data via broadcast on the control
system network or via multicast to a multicast group.
Consumers simply listen for the incoming data. For most
control systems, there are certain parameters which are

of system-wide interest. In the world of accelerators, it
might be beam energies, beam currents, beam lifetimes,
accelerator states, etc.

• Producer–Subscriber. A hybrid between the above
two modes is also possible under TINE, in which
the subscribers request data to be produced on the
network (a ‘network subscription’). This is an especially
useful method of data transmission for either large-scale
machines with many clients needing the same data or
large amounts of data sent to multiple clients (such as
video). Using the producer–subscriber architecture makes
the most efficient possible use of the available network
bandwidth.

Each of the above modes of data exchange could be used
individually to define the control system architecture, but more
likely you will want to use these modes in combination.

For simplicity, in the following sections of this paper, the
term ‘server’ will mean a data producer in general, and not
only a server in a ‘client–server’ approach context. The same
refers to the client and data consumer: the term ‘client’ will be
used.

4. TINE: security

In an Ethernet-based control system, two security issues should
be considered.

The first is, of course, intruder attack. This relates to
the general intranet security problem and has more to do with
system administration than the control system proper.

The second is to prevent accidental interference with
control system operations. TINE allows open read access to
all control parameters; namely all data provided by servers can
be freely read by middle-layer servers or client applications.
Write access, however, can be restricted to a set of users and/or
specific networks or even specific network addresses.

5. TINE: no data-type limits

Since TINE data servers and clients can be running on various
platforms, the byte ordering of the transferred data must be
considered. The proper byte reordering of transferred data is
handled by TINE automatically.

All primitive data types such as byte, integer, long, float,
double, etc and their arrays are handled. There is also
a large set of frequently used predefined composite types,
e.g. CF FLTINT or CF FLTINTINT, which are obviously a
doublet containing one float and one integer number or a triplet
containing one float and two integer numbers, respectively.
This set of predefined composite data types is introduced both
in order to handle certain systematic requirements (history
data are typically transferred as arrays of data plus time-
stamp pairs) and as a convenience for the developers. The
developers, however, can also make use of an additional
feature, usually not offered by other control systems. Namely,
one can transfer user-defined types or structures and/or arrays
of these structures. There is also no size limit. A good
example of a composite data type transferred in our system
by TINE is the beam orbit readout from the beam position
monitors, containing not only positions of the beam but also

2382

TINE as an accelerator control system at DESY

information about each monitor hardware status as well as the
measured beam intensity. The ‘orbit’ is then transferred as an
array of triplets (the CF FLTINTINT type alluded to above).
An example of a ‘user-defined’ data type is a transfer of live
pictures from CCD cameras by one single ‘read’ transaction
(containing a video header plus a video frame). Another
example is an orbit correction request issued to the ‘orbit
correction’ server, where structures containing the current
orbit, machine optics, magnet power supply settings and other
beam parameters are sent to the server and the corrected ‘orbit’
and settings are returned with a single call.

6. TINE: application programmers’ support

TINE provides application programmer interfaces (APIs) for
Java, Visual Basic, C/C++, LabView, MatLab, ActiveX and
scripting tools. An interface for the laboratory automation
environment AgilentVee (formerly HPVee) in a Windows
environment is readily available via the ActiveX support, while
a native interface is being prepared. Also under preparation is
a native .NET interface, applicable to all .NET and Mono [7]
supported languages.

Programmers building graphical-user-interface (GUI)
applications using a graphical programming environment
(such as, for example, Microsoft Visual Studio or Borland C++
Builder) will most likely make use of the ActiveX controls (or
their .NET equivalents). Developers using LabView will make
use of the rich set of VIs which is offered, although the use
of ActiveX and .NET controls in a Windows environment is
also possible. Java graphical client applications can either
use the TINE Java API directly or make use of the advance
component oriented programmer (ACOP) components and the
ACOP family of graphical beans, which are more or less
equivalent to the set of ActiveX controls [8–10].

Furthermore, to make the development of server and client
application easier, code-generation wizards are available. By
supplying the relevant device server information, the developer
launches a code-generation wizard to produce a functional C,
Visual Basic or Java code project. The generated project will
indeed produce a TINE server, but not be able to offer the
finer logic involved in hardware readout, process control, etc.
The developer can concentrate on writing his own control
algorithms and incorporating them into the server by locating
the TODO statements and sections in the generated code
and filling them in with his application-specific code. The
current TINE Server Wizard addresses only the basic server
functionality and not hardware IO. Developers of TINE front-
end servers can either access the server hardware on a ‘do-it-
yourself’ basis, where the hardware readout is not in any way
coupled to the TINE libraries, or may make use of the common
device interface (CDI) [11] layer which can be optionally
incorporated into the server project. This will be described
in the following section. In any event, simulated data will
be transferred from the generated server, until the developer
actually modifies the code to interface to the real hardware.

7. TINE at the device tier

7.1. Common device interface

In order to provide the device server’s connection to the various
field buses or hardware-specific interfaces of the accelerator
components, TINE offers a unified, generic CDI library. CDI
hides all hardware-specific details and presents the developer
with full access to the local hardware devices via the TINE
client API. The local hardware registers appear to the developer
as named (or numbered) devices. All details concerning
hardware addresses, bus IO specifics, read-back calibration,
etc are buried inside the CDI database. Different field buses
are accessed via CDI through a bus ‘plug’, which must wrap
all of the bus-specific details in a manner understood by CDI.
Currently existing bus plugs include generic access methods
to device electronics via SEDAC, CAN, RS232, GPIB and
TwinCat [12]. The bus plugs for USB and VME buses
are under construction. For those cases not yet supported
by CDI, developers can either supply a bus plug themselves
(a straightforward task) or follow the ‘do-it-yourself’ method
of handling the interface to the hardware by using a hardware-
specific IO API in ‘C’ or Visual Basic code. The current CDI
and bus plug libraries exist for both Windows and UNIX. A
CDI library for VxWorks is still under development and will be
available soon. Servers written in Java access the CDI library
via the Java Native Interface (JNI).

7.2. Embedded servers

The small footprint of TINE makes possible the creation of
embedded servers. So far our experiences include successful
server implementations for ALTERA-NIOS II and on PC104
[13] based system running the embedded Linux, ELINOS [14].

8. TINE at the integration tier

The integration tier hosts system-specific middle-layer servers
and several TINE services.

8.1. Application-specific middle-layer servers

TINE servers can also play the role of clients to other servers,
collecting data from device servers or other middle-layer
servers. The aim of these servers is to provide levels of
processing, coordination and management (i.e. business logic)
which is either not available or practical to do directly at
the front end. Although they can have very complicated
processing logic, they utilize the same standard TINE server
framework as classic device servers. As mentioned earlier, the
source code of the TINE server skeleton can be generated by
the TINE Server Wizard.

8.2. TINE connections to experiments and other
control systems

Experiments being carried out on DESY accelerators are
built and managed by scientists from several countries
and institutes, and represent a very eclectic approach to
data acquisition and availability. For the purpose of

2383

P Bartkiewicz and P Duval

accessing experiment data, the NETMEX (network-machine-
experiment-exchange) server was developed. This is a TINE
server with simplified functionality, providing ‘read-only’
access to experimental data. Since this is a pure TINE code, it
can be compiled for all supported platforms.

TINE can also seamlessly integrate to other popular
control systems, among them EPICS—using the Tine2Epics
translator [15] (which essentially runs EPICS over TINE
instead of Channel Access)—and DOOCS, which has
embedded the TINE protocol. Since TINE is also used by
KEK, Japan, there is also an interface to their STARS [16]
control system and via a STARS bridge to a COACK [17]
control system.

8.3. TINE services

TINE offers several central services as TINE servers. The
most important of these services are given below.

• Equipment name server. In TINE as in any control
system, user application programs (clients) make use of
the services provided by device servers or middle-layer
servers. Essential to smooth operation is then the locating
of the services offered, i.e. server address resolution. This,
in general, amounts to matching a human-readable device
server name to its network address. TINE uses an address
resolution mechanism, transparent to the server and client
developers, which incorporates the TINE equipment name
server (ENS). The ENS manages address resolution for
all control points. Using the ENS also allows a ‘plug
and play’ mechanism for servers, which, upon start-up,
‘plug’ themselves into the ENS database, thus obviating
the need for a control system administrator to add new
server addresses by hand. Similarly, address changes are
verified by the ENS when a server seeks to make use of a
new network address. First, a query is sent to determine
if a server by the same name is still in operation under
the old address. If so, an ‘address in use’ message is
returned to the start-up server and the address change is
refused. Due to the ‘plug and play’ feature, the TINE
ENS can operate without intervention by a control system
administrator. Nonetheless, if obsolete servers are not
removed from time to time, the equipment database can
contain a lot of unnecessary information. It might also
become desirable to add ‘alias’ names to the equipment
database or to otherwise make changes by hand. An
administrator is always free to locate the database files
read by the ENS and edit them by hand. The ENS
checks regularly for external changes to its database and
can reread its database on the fly. For the administrative
database manipulations, a graphical user-interface tool is
also provided.

• Archive services. TINE offers three different systematic
ways for archiving data.
(1) Central archiving. Central archiving consists of

acquiring the specified data, passing them through the
relevant filters and writing them to disk if warranted.
Here, the ‘filtering’ can be adjusted to store data based
on state and/or tolerance criteria. Central archiving
is managed by a pair of TINE servers running on
the same machine or otherwise sharing the same file

system. The first server is designated as the ‘archive
server’ and is responsible for collecting the data and
committing it to disk. The second server is designated
as the ‘archive reader’ and is responsible for handling
all requests for archive data. For the archived data
manipulation, a set of client viewers is offered.

(2) Local archiving. All TINE servers contain a built-
in module of a local history server (LHS), which
can be activated by request. This means that
local archiving takes place at the server, where the
server can be configured to maintain an archive of
specified properties both on a short-term basis (in
main memory) and on a long-term basis (on disk).
In this case, the filtering can only accommodate
tolerance specifications. A TINE server can be
queried for archived data by all other control system
participants. In particular, the same toolset for history
analysis can be used, as for centrally archived data.

(3) Event-driven archiving. In contrast to the case
of central archiving, where data are collected
periodically, applying defined filtering rules, event-
based archives are archive snapshots which are
based on scripts specifically targeting the event in
question. In our accelerator world, the event can
be a message such as ‘the beam was lost due to a
magnet quench’ (i.e. a post-mortem event) or ‘proton
injection complete’ (i.e. a normal operational event).
In such cases it is desirable to store a snapshot of the
relevant machine parameters (like machine optics,
current orbit, etc) at that time. A scan of ‘injection’
events over a time range (say, the past week) would
then tell you precisely when the beam was injected
and you could easily examine the stored information
at those times. Event scripts can also trigger other
activities by issuing commands to other servers,
transient recorders, etc delivering data sampled with
a higher rate.

• Alarm services. TINE alarms are processed at two levels.
The first level is located directly at the front end and
is known as the local alarm server (LAS). The LAS
is a standard part of all TINE servers, independent of
platform. Here, it is most easily determined whether
an alarm is oscillating (coming and going), is persistent,
has terminated, etc. The second level of processing
occurs at a dedicated middle-layer TINE server known
as the central alarm server (CAS). Here, alarms are
collected, filtered, sorted and made available for client-
side review. The CAS also performs several additional
tasks more appropriate to central level processing. It
can determine whether ‘server-down’ alarms need to be
issued in the case of a non-responsive server (something
an individual server of course cannot do). It can also
take ‘actions’ following the receipt of particular alarms.
For instance, it can issue event triggers for archiving,
send e-mails, write reports, etc. The TINE alarm viewer
receives data primarily directly from the CAS. Specific
alarm information (descriptions, references, etc) is always
retrieved from the individual servers.

• Synchronization service. The TINE time server is a server
operating in the producer–consumer mode and produces

2384

TINE as an accelerator control system at DESY

Figure 4. A summary of 3 days of operations at HERA using the
archived state counters.

one quantity, namely the current TINE data time stamp.
It sends via multicast the current TINE time stamp at 1 s
intervals. If a TINE server is configured to intercept these
multicasts (the default), it can then apply an offset to its
own clock when time-stamping its data, while the local
clock is not affected, so log file entries will reflect the time
read by the local clock, whereas data time stamps will be
synchronized with the TINE time server.

• State server. The current implementation of the TINE
state server consists of a machine state repository. That
is, it accepts transient change-of-state triggers, generates
change-of-state events (used by the archiving service, for
example), maintains a running count of the duration of
any given state and responds to queries as to the current
machine state and current machine procedure. The state
information is, in turn, archived in the form of the transient
state change information as well as in the form of state
‘counters’ which increase incrementally as long as the
accelerator remains in a particular state. Archiving such
counters allows an easy method of calculating the amount
of time the machine was in a particular state over any
particular time interval, lending itself well to producing
operation history ‘pie-charts’ (see figure 4).

9. TINE at the client tier

At the client level TINE offers several general GUI
applications, used primarily for system administration,
accessing archive data, multi-channel data, analysing alarms,
control system browsing, etc. These applications are available
as Windows native applications or JAVA applications.

A propos ‘control system browsing’, the most popular
TINE GUI application (known as the ‘instant client’), is
capable of browsing the control system to locate a device
server, browsing the device server itself for exported properties
and devices, and obtaining and displaying the data offered by
the server. This application is especially useful during server
development work, where a new or upgraded server has to
be tested. The same browsing capabilities are embedded
into the ACOP ActiveX controls and ACOP Java beans,
which allow for the rapid application development of ‘thin
clients’, where no programming is required of the applications
developer. TINE also supports (and strongly encourages) the
development of ‘rich clients’, where the applications developer
can introduce his own coding algorithms, massage data or
coordinate data from multiple sources prior to display. It
should be noted that ACOP controls are first and foremost
‘displayers’, which means that they provide both a connection
to the TINE control system and advanced data presentation
and plotting functionality.

10. Closing note

Although the system was developed at DESY (although
modelled to some extent on the ISOLDE [18] system at
CERN in the early 1990s) it can be applied everywhere, where
the Ethernet is used as a data transmission medium for data
acquisition and control. It does not matter if one needs to
build a network containing three PCs or several hundreds of
machines with different operating systems; TINE can scale
perfectly to one’s needs. Note that the HERA machine
is one of the largest and most complex accelerators in the
world. Industrial plants and large research institutes, such
as high-energy research centres, astronomical observatories,
biology and chemical labs, will especially appreciate the
benefits offered by the multi-platform, multi-protocol and
multi-architecture nature of TINE. TINE has a small footprint
and offers efficient data transfer even in extreme cases (for
instance, 500 Kbyte video frames multicast at 10 Hz). For
bench mark comparisons with other control systems, see [19].

The TINE source code and makefiles for many
platforms can be downloaded free from the DESY website:
http://adweb.desy.de/mst/tine/tineDownloads.html.

The documentation, examples and tools are available in
the official TINE website: http://tine.desy.de.

For questions and comments, the authors of this paper can
be contacted at their e-mail ids.

References

[1] http://tine.desy.de
[2] Schmitz R (DESY) 1999 A control system for the DESY

accelerator chains Proc. PCaPAC 99, KEK (Tsukuba,
Japan)

[3] http://www.can-cia.org
[4] http://www.profibus.com
[5] http://www.aps.anl.gov/epics
[6] http://tesla.desy.de/doocs/doocs.html
[7] http://www.mono-project.com
[8] Deloose I, Duval P and Wu H 1997 The use of ACOP tools in

writing control system software Proc. ICALEPS’97
[9] Duval P and Wu H 2002 Acop as a Java bean Proc. PCaPAC

2002

2385

http://adweb.desy.de/mst/tine/tineDownloads.html
http://tine.desy.de
http://tine.desy.de
http://www.can-cia.org
http://www.profibus.com
http://www.aps.anl.gov/epics
http://tesla.desy.de/doocs/doocs.html
http://www.mono-project.com

P Bartkiewicz and P Duval

[10] Duval P, Kriznar I and Wu H 2006 The Acop family of beans
Proc. PCaPAC 2006, (Jefferson Lab, Newport News (VA,
USA))

[11] Duval P 2006 Using the common device interface in TINE
Proc. PCaPAC 2006 (Jefferson Lab, Newport News
(VA, USA))

[12] http://www.beckhoff.de
[13] http://www.pc104.org
[14] http://www.sysgo.com/en/products/elinos

[15] Kakucs Z, Duval P and Clausen M 2001 An EPICS to TINE
translator Proc. ICALEPCS 2001

[16] http://pfwww.kek.jp/stars
[17] http://coack.kek.jp
[18] Billinge R, Bret A, Deloose I, Pace A and Shering G 1991

A PC based control system for the CERN ISOLDE
separators Proc. ICALEPCS ‘91 (Tsukuba, Japan)

[19] Duval P and Plesko M 2002 The Babylonization of control
systems Proc. PCaPAC 2002 (Frascati, Italy)

2386

http://www.beckhoff.de
http://www.pc104.org
http://www.sysgo.com/en/products/elinos
http://pfwww.kek.jp/stars
http://coack.kek.jp

	1. Introduction
	2. Overview of control system tasks at DESY
	2.1. Short overview of our facilities
	2.2. Some facts about the accelerator chains
	2.3. Connection to the experiments
	2.4. Requested features

	3. TINE: three-fold integrated networking environment
	4. TINE: security
	5. TINE: no data-type limits
	6. TINE: application programmers' support
	7. TINE at the device tier
	7.1. Common device interface
	7.2. Embedded servers

	8. TINE at the integration tier
	8.1. Application-specific middle-layer servers
	8.2. TINE connections
	8.3. TINE services

	9. TINE at the client tier
	10. Closing note
	References

