|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.desy.acop.video.analysis.FittingUtilities
public class FittingUtilities
FittingUtilities provides a set of utilities to fit a
gaussian function to a set of data
| Constructor Summary | |
|---|---|
FittingUtilities()
|
|
| Method Summary | |
|---|---|
static double[][] |
FFT1D(double[][] x,
boolean forward)
|
static double[] |
fit(double[] y,
double constY)
Performs a linear fit of exponential function to the y data. |
static boolean |
isNaN(double[] values)
Checks if any of the values in the arrays is NaN. |
static double[] |
lmGauss(double[] x,
double[] y,
double[] weights,
double[] startValues)
Fits a gauss with offset y = Ae^(-(x-C)^2/(2B^2)) to the given data. |
static double[] |
lmLinear(double[] x,
double[] y,
double[] weights,
double[] startValues)
Fits a gauss with offset y = Ae^(-(x-C)^2/(2B^2)) + D + E x to the given data. |
static double[] |
lmOffset(double[] x,
double[] y,
double[] weights,
double[] startValues)
Deprecated. ues lmLinear(double[], double[], double[], double[]) |
static void |
main(java.lang.String[] args)
|
static double[] |
smooth(double[] x)
Smooths the data with averaging. |
static double[] |
smooth(double[] x,
boolean lowPassFilterOn)
Smooths the values in the array with averaging and applying a low pass filter. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public FittingUtilities()
| Method Detail |
|---|
@Deprecated
public static double[] lmOffset(double[] x,
double[] y,
double[] weights,
double[] startValues)
throws OptimizationException,
FunctionEvaluationException,
java.lang.IllegalArgumentException
lmLinear(double[], double[], double[], double[])
x - the independent variable datay - the dependent variable dataweights - the weights of the measurementsstartValues - starting values for the parameters
OptimizationException
FunctionEvaluationException
java.lang.IllegalArgumentException
public static double[] lmLinear(double[] x,
double[] y,
double[] weights,
double[] startValues)
throws OptimizationException,
FunctionEvaluationException,
java.lang.IllegalArgumentException
x - the independent variable datay - the dependent variable dataweights - the weights of the measurementsstartValues - starting values for the parameters
OptimizationException
FunctionEvaluationException
java.lang.IllegalArgumentException
public static double[] lmGauss(double[] x,
double[] y,
double[] weights,
double[] startValues)
throws OptimizationException,
FunctionEvaluationException,
java.lang.IllegalArgumentException
x - the independent variable datay - the dependent variable dataweights - the weights of the measurementsstartValues - starting values for the parameters
OptimizationException
FunctionEvaluationException
java.lang.IllegalArgumentException
public static void main(java.lang.String[] args)
throws MathException
MathException
public static double[] fit(double[] y,
double constY)
throws MathException
y - constY -
MathExceptionpublic static boolean isNaN(double[] values)
values -
public static double[] smooth(double[] x)
x - data to be smoothed
public static double[] smooth(double[] x,
boolean lowPassFilterOn)
x - the data to smoothlowPassFilterOn - true if low pass filtering should be used
public static double[][] FFT1D(double[][] x,
boolean forward)
x - array of values. First array are real values, second imaginaryforward - true for forward and false for inverse transform
java.lang.Exception
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||